Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 314: 115016, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35460984

ABSTRACT

The use of crushed basic igneous rock and crushed concrete for enhanced rock weathering and to facilitate pedogenic carbonate precipitation provides a promising method of carbon sequestration. However, many of the controls on precipitation and subsequent effects on soil properties remain poorly understood. In this study, engineered soil plots, with different ratios of concrete or dolerite combined with sand, have been used to investigate relationships between sequestered inorganic carbon and geotechnical properties, over a two-year period. Cone penetration tests with porewater pressure measurements (CPTu) were conducted to determine changes in tip resistance and pore pressure. C and O isotope analysis was carried out to confirm the pedogenic origin of carbonate minerals. TIC analysis shows greater precipitation of pedogenic carbonate in plots containing concrete than those with dolerite, with the highest sequestration values of plots containing each material being equivalent to 33.7 t C ha-1 yr-1 and 17.5 t C ha-1 yr-1, respectively, calculated from extrapolation of results derived from the TIC analysis. TIC content showed reduction or remained unchanged for the top 0.1 m of soil; at a depth of 0.2 m however, for dolerite plots, a pattern of seasonal accumulation and loss of TIC emerged. CPTu tip resistance measurements showed that the presence of carbonates had no observable effect on penetration resistance, and in the case of porewater pressure measurements, carbonate precipitation does not change the permeability of the substrate, and so does not affect drainage. The results of this study indicate that both the addition of dolerite and concrete serve to enhance CO2 removal in soils, that soil temperature appears to be a control on TIC precipitation, and that mineral carbonation in constructed soils does not lead to reduced drainage or an increased risk of flooding.


Subject(s)
Carbon Dioxide , Soil , Carbon , Carbon Dioxide/chemistry , Carbon Sequestration , Carbonates/chemistry , Minerals/chemistry , Soil/chemistry
2.
J Environ Manage ; 304: 114307, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34942547

ABSTRACT

Microbial Induced Calcite Precipitation (MICP) via biostimulation of urea hydrolysis is a biogeochemical process in which soil indigenous ureolytic microorganisms catalyse the decomposition of urea into ammonium and carbonate ions which, in the presence of calcium, precipitate as calcium carbonate minerals. The environmental conditions created by urine in soil resemble those induced by MICP via urea hydrolysis. Thus, this study assesses the suitability of a waste product, cow urine, as a source of nutrients for MICP. Urea stability in fresh and sterilised urine were monitored for a month to cover the length of a potential MICP intervention. An experimental soil column set up was used to compare the soil response to the repeated application of fresh and sterilised cow urine, within pH of 7 and 9, and the chemical-based solution. Urea hydrolysis and the carbonate content in solution were monitored to assess the suitability of the proposed alternative. In addition, the nitrification process was monitored. Key findings indicated i) urea concentration and stability in fresh and sterilised cow urine are suitable for MICP application; ii) the soil response to treatments of cow urine within pH of 7 and 9 are similar to the chemical-based solution; and iii) increasing solution pH results in a faster activation of ureolytic microorganisms and higher carbonate content in solution. These results demonstrate that cow urine is a suitable substitute of the chemical-based MICP application.


Subject(s)
Calcium Carbonate , Soil , Animals , Cattle , Chemical Precipitation , Nutrients , Sand
3.
Front Microbiol ; 11: 557119, 2020.
Article in English | MEDLINE | ID: mdl-33013787

ABSTRACT

Microbial-Induced Calcite Precipitation (MICP) stimulates soil microbiota to induce a cementation of the soil matrix. Urea, calcium and simple carbon nutrients are supplied to produce carbonates via urea hydrolysis and induce the precipitation of the mineral calcite. Calcium chloride (CaCl2) is typically used as a source for calcium, but basic silicate rocks and other materials have been investigated as alternatives. Weathering of calcium-rich silicate rocks (e.g., basalt and dolerite) releases calcium, magnesium and iron; this process is associated with sequestration of atmospheric CO2 and formation of pedogenic carbonates. We investigated atmospheric carbon fluxes of a MICP treated sandy soil using CaCl2 and dolerite fines applied on the soil surface as sources for calcium. Soil-atmosphere carbon fluxes were monitored over 2 months and determined with an infrared gas analyser connected to a soil chamber. Soil inorganic carbon content and isotopic composition were determined with isotope-ratio mass spectrometry. In addition, soil-atmosphere CO2 fluxes during chemical weathering of dolerite fines were investigated in incubation experiments with gas chromatography. Larger CO2 emissions resulted from the application of dolerite fines (116 g CO2-C m-2) compared to CaCl2 (79 g CO2-C m-2) but larger inorganic carbon precipitation also occurred (172.8 and 76.9 g C m-2, respectively). Normalising to the emitted carbon to precipitated carbon, the environmental carbon cost was reduced with dolerite fines (0.67) compared to the traditional MICP treatment (1.01). The carbon isotopic signature indicated pedogenic carbonates (δ13Cav = -8.2 ± 5.0‰) formed when dolerite was applied and carbon originating from urea (δ13Cav = -46.4 ± 1.0‰) precipitated when CaCl2 was used. Dolerite fines had a large but short-lived (<2 d) carbon sequestration potential, and results indicated peak CO2 emissions during MICP could be balanced optimising the application of dolerite fines.

4.
Sci Total Environ ; 703: 135573, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31771848

ABSTRACT

Management of urban brownfield land can contribute to significant removal of atmospheric CO2 through the development of soil carbonate minerals. However, the potential magnitude and stability of this carbon sink is poorly quantified as previous studies address a limited range of conditions and short durations. Furthermore, the suitability of carbonate-sequestering soils for construction has not been investigated. To address these issues we measured total inorganic carbon, permeability and ground strength in the top 20 cm of soil at 20 brownfield sites in northern England, between 2015 and 2017. Across all sites accumulation occurred at a rate of 1-16 t C ha-1 yr-1, as calcite (CaCO3), corresponding to removal of approximately 4-59 t CO2 ha-1 yr-1, with the highest rate in the first 15 years after demolition. C and O stable isotope analysis of calcite confirms the atmospheric origin of the measured inorganic carbon. Statistical modelling found that pH and the content of fine materials (combined silt and clay content) were the best predictors of the total inorganic carbon content of the samples. Measurement of permeability shows that sites with carbonated soils possess a similar risk of run-off or flooding to sandy soils. Soil strength, measured as in-situ bearing capacity, increased with carbonation. These results demonstrate that the management of urban brownfield land to retain fine material derived from concrete crushing on site following demolition will promote calcite precipitation in soils, and so offers an additional CO2 removal mechanism, with no detrimental effect on drainage and possible improvements in strength. Given the large area of brownfield land that is available for development, the contribution of this process to CO2 removal by urban soils needs to be recognised in CO2 mitigation policies.

SELECTION OF CITATIONS
SEARCH DETAIL
...