Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mycol Res ; 113(5): 602-10, 2009 May.
Article in English | MEDLINE | ID: mdl-19640401

ABSTRACT

A multiplex PCR method has been developed to detect, differentiate, and confirm the morphological identification of three root infecting Olpidium spp.: O. bornovanus, O. brassicae, and O. virulentus. Of the 132 root samples examined, 101 samples were infected by Olpidium spp.. Based on the morphology of resting spores, the presence of O. bornovanus was confirmed in 20.5% of the samples, whereas species identity could not be determined for the remaining samples because they failed to reproduce sexually. With multiplex PCR, it was possible to determine the Olpidium identity of all the infected samples, even when resting spores were not formed. This method was also effective for detecting Olpidium spp. in water samples. In addition, the specificity and sensitivity of multiplex PCR were evaluated. The multiplex PCR method was validated with samples of 9 different crops from 11 countries of America, Europe, and Africa.


Subject(s)
Chytridiomycota/classification , Chytridiomycota/genetics , Polymerase Chain Reaction/methods , DNA, Fungal/analysis , Mycological Typing Techniques , Sensitivity and Specificity
2.
Virus Res ; 128(1-2): 43-51, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17524509

ABSTRACT

The population structure and genetic variation of two begomoviruses: tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl virus (TYLCV) in tomato crops of Spain were studied from 1997 until 2001. Restriction digestion of a genomic region comprised of the CP coat protein gene (CPR) of 358 TYLC virus isolates enabled us to classify them into 14 haplotypes. Nucleotide sequences of two genomic regions: CPR, and the surrounding intergenic region (SIR) were determined for at least two isolates per haplotype. SIR was more variable than CPR and showed multiple recombination events whereas no recombination was detected within CPR. In all geographic regions except Murcia, the population was, or evolved to be composed of one predominant haplotype with a low genetic diversity (<0.0180). In Murcia, two successive changes of the predominant haplotype were observed in the best studied population. Phylogenetic analysis showed that the TYLCSV sequences determined clustered with sequences obtained from the GenBank of other TYLCSV Spanish isolates which were clearly separated from TYLCSV Italian isolates. Most of our TYLCV sequences were similar to those of isolates from Japan and Portugal, and the sequences obtained from TYLCV isolates from the Canary island of Lanzarote were similar to those of Caribbean TYLCV isolates.


Subject(s)
Begomovirus/genetics , Evolution, Molecular , Genetic Variation , Plant Diseases/virology , Plant Leaves/virology , Solanum lycopersicum/virology , Agriculture , Begomovirus/classification , DNA, Viral/analysis , DNA, Viral/isolation & purification , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Spain
3.
Phytopathology ; 96(3): 274-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-18944442

ABSTRACT

ABSTRACT The population structure of Pepino mosaic virus (PepMV), which has caused severe epidemics in tomato in Spain since 2000, was analyzed. Isolates were characterized by the nucleotide sequence of the triple gene block and coat protein gene and, for a subset of isolates, a part of the RNA-dependent RNA polymerase gene. The full-length sequence of the genomic RNA of a Solanum muricatum isolate from Peru also was determined. In spite of high symptom diversity, the Spanish population of PepMV mostly comprised highly similar isolates belonging to the strain reported in Europe (European tomato strain), which has been the most prevalent genotype in Spain. The Spanish PepMV population was not structured spatially or temporally. Also, isolates highly similar to those from nontomato hosts from Peru (Peruvian strain) or to isolate US2 from the United States (US2 strain) were detected at lower frequency relative to the European strain. These two strains were detected in peninsular Spain only in 2004, but the Peruvian strain has been detected in the Canary Islands since 2000. These results suggest that PepMV was introduced into Spain more than once. Isolates from the Peruvian and US2 strains always were found in mixed infections with the European tomato strain, and interstrain recombinants were detected. The presence of different strains of the virus, and of recombinant isolates, should be considered for the development of control strategies based on genetic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...