Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34821803

ABSTRACT

Peach orchards are intensively sprayed crops, and alternative methods must be found to replace pesticides. We intend here to evaluate if limiting water and nitrogen (N) supply could be effective in controlling aphid infestation in commercial orchards. N and water supply were therefore either unrestricted or restricted by 30% only for water, or for both water and N, in 2018 and 2019 on trees of two contrasting varieties. Natural infestations (green peach aphid, mealy plum aphid, leaf curl aphid) were monitored regularly at tree and shoot level. Infested and control shoots were compared for their development during the infestation period, their apex concentrations of total N, amino acids, non-structural carbohydrates, and polyphenols at infestation peak. At tree level, limiting both water and N supplies decreased the proportion of infested shoots by 30%, and the number of trees hosting the most harmful specie by 20 to 50%. Limiting only N supplies had almost no effect on infestation severity. At shoot level, the apex N concentration of infested shoots was stable (around 3.2% dry weight) and was found to be independent of treatment, variety, and year. The remaining biochemical variables were not affected by infestation status but by variety and year. Shoot development was only slightly affected by treatment. Aphids colonized the most vigorous shoots, being those with longer apical ramifications in 2018 and higher growth rates in 2019, in comparison with the controls. The differences were, respectively, 40 and 55%. It was concluded that a double restriction in water and N could limit, but not control, aphid infestations in commercial orchards.

2.
Pest Manag Sci ; 76(2): 797-806, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31400056

ABSTRACT

BACKGROUND: The green peach aphids, Myzus persicae, are a predominant pest in peach orchards as they can alter fruiting and shoot development for several years. This aphid developed resistance against pesticides. Among the alternative control strategies is the reduction of the trees' attractiveness to aphids. In order to identify the plant variables related to plant susceptibility, young peach trees were submitted to various supplies of water and nitrogen, and then artificially infested with aphids. Shoot development, plant water potential and aphid abundance were then monitored on a weekly basis. The apex concentrations in total N, amino acids, soluble sugars and polyphenols were determined at infestation start and infestation peak. RESULTS: Until infestation peak, the thermal time requests for aphid development were independent of infestation severity. The aphid populations then collapsed more rapidly on the low infested shoots than on the high infested ones. Aphid abundances appeared to be positively related to shoot development (leaf expansion and secondary ramification), to shoot growth (stem length and diameter) and to apex concentrations in amino acids and non-structural carbohydrates (NSC). Polyphenols had the opposite effect. CONCLUSION: Peach susceptibility to aphids depends on shoot development and apex composition, and could be lowered by decreasing the water and nitrogen inputs. © 2019 Society of Chemical Industry.


Subject(s)
Aphids , Prunus persica , Animals , Phenotype , Plant Leaves
3.
Tree Physiol ; 34(1): 61-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24353084

ABSTRACT

In deciduous trees, shoot development in early spring is assumed to be achieved mainly at the expense of nitrogen (N) stores. Indeed, the possible compensation for poor autumn N storage by early spring N uptake has been little studied. We therefore determined the dynamics of spring N uptake in relation to spring N supply, carbon and N storage and shoot development. Young peach trees (Prunus persica L. Batsch, cv. 'GF305') were raised outdoors in a hydroponic set-up during the spring and summer, with an excessive N supply. During the autumn, half of the trees were then N limited. The following spring, the N supply remained either high or low, or changed from high to low or low to high. Between 6 March and 13 May, N uptake was measured automatically on an hourly basis, while shoot growth was monitored once a week. These in situ measurements were completed by three destructive harvests to assess organ composition in N and total non-structural carbohydrates (TNC). Until the end of April, N uptake was dependent on the autumn N treatment, being higher in trees that had been N limited in the autumn. Total non-structural carbohydrate mobilization was also higher in those trees that had lost at least 17 g TNC by 24 April, while TNC levels in non-limited trees remained stable or even rose. Shoot development, estimated by the number of elongated axes and leaves per axis, was also slightly delayed by an N limitation in autumn. After 24 April, N uptake rates increased notably under all treatments and was determined by the spring N supply. In trees receiving a high N supply in the spring, the uptake rates also displayed marked short-term variations. That reduced the differences between treatments and by 13 May no differences could be evidenced between the trees in terms of organ biomass and TNC and N contents, whatever the treatment. We concluded that in the early spring, N uptake may compensate for a deficit of N storage insofar as large quantities of TNC can be mobilized for that purpose.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Prunus/metabolism , Biomass , Carbohydrates/analysis , Fertilizers , France , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Prunus/growth & development , Seasons , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...