Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4259, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769334

ABSTRACT

Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.


Subject(s)
COVID-19 , Hospital Mortality , Machine Learning , RNA, Long Noncoding , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/virology , COVID-19/genetics , Male , Female , Aged , RNA, Long Noncoding/genetics , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Europe/epidemiology , Canada/epidemiology , Cohort Studies , Aged, 80 and over , Adult
2.
Sensors (Basel) ; 21(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803121

ABSTRACT

Understanding people's eating habits plays a crucial role in interventions promoting a healthy lifestyle. This requires objective measurement of the time at which a meal takes place, the duration of the meal, and what the individual eats. Smartwatches and similar wrist-worn devices are an emerging technology that offers the possibility of practical and real-time eating monitoring in an unobtrusive, accessible, and affordable way. To this end, we present a novel approach for the detection of eating segments with a wrist-worn device and fusion of deep and classical machine learning. It integrates a novel data selection method to create the training dataset, and a method that incorporates knowledge from raw and virtual sensor modalities for training with highly imbalanced datasets. The proposed method was evaluated using data from 12 subjects recorded in the wild, without any restriction about the type of meals that could be consumed, the cutlery used for the meal, or the location where the meal took place. The recordings consist of data from accelerometer and gyroscope sensors. The experiments show that our method for detection of eating segments achieves precision of 0.85, recall of 0.81, and F1-score of 0.82 in a person-independent manner. The results obtained in this study indicate that reliable eating detection using in the wild recorded data is possible with the use of wearable sensors on the wrist.

SELECTION OF CITATIONS
SEARCH DETAIL
...