Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nurs Outlook ; 70(6): 820-826, 2022.
Article in English | MEDLINE | ID: mdl-36154773

ABSTRACT

Nurses are well-positioned to solve many problems in healthcare through engagement in innovation. Support from healthcare organizations to facilitate creative partnerships may accelerate nurses' ability to innovate and improve job satisfaction. The value of creative partnerships is rooted in the diversity of experiences and skillsets of each project team member. While nurses may be content experts and key stakeholders, they often lack experience with project management, information technology, product development, and other important skills. We describe the use of co-creation approaches in creative partnerships with diverse stakeholders to enhance the ability of nurse-led project teams to build valuable and sustainable products or services.


Subject(s)
Job Satisfaction , Leadership , Humans , Delivery of Health Care
2.
J Environ Sci (China) ; 107: 184-193, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34412781

ABSTRACT

The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; > 90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s-1 and 2.9 s-1 for NO2 and 0.25 s-1 and 0.10 s-1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes.


Subject(s)
Air Pollutants , Nitrogen Dioxide , Air Pollutants/analysis , Nitric Oxide , Nitrogen Dioxide/analysis , Nitrous Acid/analysis , Photolysis
3.
J Air Waste Manag Assoc ; 70(8): 753-764, 2020 08.
Article in English | MEDLINE | ID: mdl-32412399

ABSTRACT

Mixing ratios of the criteria air contaminant nitrogen dioxide (NO2) are commonly quantified by reduction to nitric oxide (NO) using a photolytic converter followed by NO-O3 chemiluminescence (CL). In this work, the performance of a photolytic NO2 converter prototype originally designed for continuous emission monitoring and emitting light at 395 nm was evaluated. Mixing ratios of NO2 and NOx (= NO + NO2) entering and exiting the converter were monitored by blue diode laser cavity ring-down spectroscopy (CRDS). The NO2 photolysis frequency was determined by measuring the rate of conversion to NO as a function of converter residence time and found to be 4.2 s-1. A maximum 96% conversion of NO2 to NO over a large dynamic range was achieved at a residence time of (1.5 ± 0.3) s, independent of relative humidity. Interferences from odd nitrogen (NOy) species such as peroxyacyl nitrates (PAN; RC(O)O2NO2), alkyl nitrates (AN; RONO2), nitrous acid (HONO), and nitric acid (HNO3) were evaluated by operating the prototype converter outside its optimum operating range (i.e., at higher pressure and longer residence time) for easier quantification of interferences. Four mechanisms that generate artifacts and interferences were identified as follows: direct photolysis, foremost of HONO at a rate constant of 6% that of NO2; thermal decomposition, primarily of PAN; surface promoted photochemistry; and secondary chemistry in the connecting tubing. These interferences are likely present to a certain degree in all photolytic converters currently in use but are rarely evaluated or reported. Recommendations for improved performance of photolytic converters include operating at lower cell pressure and higher flow rates, thermal management that ideally results in a match of photolysis cell temperature with ambient conditions, and minimization of connecting tubing length. When properly implemented, these interferences can be made negligibly small when measuring NO2 in ambient air. IMPLICATIONS: A new near-UV photolytic converter for measurement of the criteria pollutant nitrogen dioxide (NO2) in ambient air by NO-O3 chemiluminescence (CL) was characterized. Four mechanisms that generate interferences were identified and investigated experimentally: direct photolysis of nitrous acid, which occurred at a rate constant 6% that of NO2, thermal decomposition of PAN and N2O5, surface promoted chemistry involving nitric acid, and secondary chemistry involving NO in the tubing connecting the converter and CL analyzer. These interferences are predicted to occur in all NO2 P-CL systems but can be avoided by appropriate thermal management and operating at high flow rates.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Nitrogen Dioxide/analysis , Air Pollutants/chemistry , Nitrogen Dioxide/chemistry , Photolysis
4.
Annu Rev Plant Biol ; 67: 703-29, 2016 04 29.
Article in English | MEDLINE | ID: mdl-26789233

ABSTRACT

Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Crops, Agricultural/growth & development , Edible Grain , Plant Oils , Biodiversity , Ecosystem , Fertilizers , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...