Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026694

ABSTRACT

Notch proteins are single pass transmembrane receptors that are activated by proteolytic cleavage, allowing their cytosolic domains to function as transcription factors in the nucleus. Upon binding, Delta/Serrate/LAG-2 (DSL) ligands activate Notch by exerting a "pulling" force across the intercellular ligand/receptor bridge. This pulling force is generated by Epsin-mediated endocytosis of ligand into the signal-sending cells, and results in cleavage of the force-sensing Negative Regulatory Region (NRR) of the receptor by an ADAM10 protease [Kuzbanian (Kuz) in Drosophila ]. Here, we have used chimeric Notch and DSL proteins to screen for other domains that can substitute for the NRR in the developing Drosophila wing. While many of the tested domains are either refractory to cleavage or constitutively cleaved, we identify several that mediate Notch activation in response to ligand. These NRR analogues derive from widely divergent source proteins and have strikingly different predicted structures. Yet, almost all depend on force exerted by Epsin-mediated ligand endocytosis and cleavage catalyzed by Kuz. We posit that the sequence space of protein domains that can serve as force-sensing proteolytic switches in Notch activation is unexpectedly large, a conclusion that has implications for the mechanism of target recognition by Kuz/ADAM10 proteases and is consistent with a more general role for force dependent ADAM10 proteolysis in other cell contact-dependent signaling mechanisms. Our results also validate the screen for increasing the repertoire of proteolytic switches available for synthetic Notch (synNotch) therapies and tissue engineering.

2.
bioRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37503188

ABSTRACT

Cell-cell communication through direct contact is essential during fundamental biological processes such as tissue repair and morphogenesis. Synthetic forms of contact-mediated cell-cell communication can generate custom gene expression outputs, making them valuable for tissue engineering and regenerative medicine. To precisely control the location and timing of synthetic signal outputs in growing tissues, it is necessary to understand the mechanisms underlying its spatiotemporal patterns. Towards this goal, we combine theory and experiments to study patterns of synthetic Notch (synNotch) activation - a custom synthetic gene circuit that we implement within Drosophila wing imaginal discs. We show that output synthesis and degradation rates together with cell division are the key minimal parameters that predict the heterogeneous spatiotemporal patterns of synNotch activation. Notably, synNotch output forms a graded exponential spatial profile that extends several cell diameters from the signal source, establishing evidence for signal propagation without diffusion or long range cell-cell communication. Furthermore, we discover that the shape of the interface between ligand and receptor cells is important in determining the synNotch output. Overall, we elucidate key biophysical principles that underlie complex emergent spatiotemporal patterns of synNotch output in a growing tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...