Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Neuroimmune Pharmacol ; 19(1): 25, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789639

ABSTRACT

Based on emerging evidence on the role for specific single-nucleotide variants (SNVs) in EIF2AK3 encoding the integrated stress response kinase PERK, in neurodegeneration, we assessed the association of EIF2AK3 SNVs with neurocognitive performance in people with HIV (PWH) using a candidate gene approach. This retrospective study included the CHARTER cohort participants, excluding those with severe neuropsychiatric comorbidities. Genome-wide data previously obtained for 1047 participants and targeted sequencing of 992 participants with available genomic DNA were utilized to interrogate the association of three noncoding and three coding EIF2AK3 SNVs with the continuous global deficit score (GDS) and global neurocognitive impairment (NCI; GDS ≥ 0.5) using univariable and multivariable methods, with demographic, disease-associated, and treatment characteristics as covariates. The cohort characteristics were as follows: median age, 43.1 years; females, 22.8%; European ancestry, 41%; median CD4 + T cell counts, 175/µL (nadir) and 428/µL (current). At first assessment, 70.5% used ART and 68.3% of these had plasma HIV RNA levels ≤ 200 copies/mL. All three noncoding EIF2AK3 SNVs were associated with GDS and NCI (all p < 0.05). Additionally, 30.9%, 30.9%, and 41.2% of participants had at least one risk allele for the coding SNVs rs1805165 (G), rs867529 (G), and rs13045 (A), respectively. Homozygosity for all three coding SNVs was associated with significantly worse GDS (p < 0.001) and more NCI (p < 0.001). By multivariable analysis, the rs13045 A risk allele, current ART use, and Beck Depression Inventory-II value > 13 were independently associated with GDS and NCI (p < 0.001) whereas the other two coding SNVs did not significantly correlate with GDS or NCI after including rs13045 in the model. The coding EIF2AK3 SNVs were associated with worse performance in executive functioning, motor functioning, learning, and verbal fluency. Coding and non-coding SNVs of EIF2AK3 were associated with global NC and domain-specific performance. The effects were small-to-medium in size but present in multivariable analyses, raising the possibility of specific SNVs in EIF2AK3 as an important component of genetic vulnerability to neurocognitive complications in PWH.


Subject(s)
HIV Infections , Polymorphism, Single Nucleotide , eIF-2 Kinase , Adult , Female , Humans , Male , Middle Aged , Cognitive Dysfunction/genetics , Cohort Studies , eIF-2 Kinase/genetics , HIV Infections/genetics , HIV Infections/complications , HIV Infections/psychology , Polymorphism, Single Nucleotide/genetics , Retrospective Studies
2.
Trends Neurosci ; 47(1): 47-57, 2024 01.
Article in English | MEDLINE | ID: mdl-38052682

ABSTRACT

Oligodendrocytes (OLs), the myelin-generating cells of the central nervous system (CNS), are active players in shaping neuronal circuitry and function. It has become increasingly apparent that injury to cells within the OL lineage plays a central role in neurodegeneration. In this review, we focus primarily on three degenerative disorders in which white matter loss is well documented: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We discuss clinical data implicating white matter injury as a key feature of these disorders, as well as shared and divergent phenotypes between them. We examine the cellular and molecular mechanisms underlying the alterations to OLs, including chronic neuroinflammation, aggregation of proteins, lipid dysregulation, and organellar stress. Last, we highlight prospects for therapeutic intervention targeting the OL lineage to restore function.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Parkinson Disease , White Matter , Humans , Neurodegenerative Diseases/metabolism , White Matter/metabolism
3.
J Pain ; 25(4): 1039-1058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37956743

ABSTRACT

An enhanced understanding of neurotransmitter systems contributing to pain transmission aids in drug development, while the identification of biological variables like age and sex helps in the development of personalized pain management and effective clinical trial design. This study identified enhanced expression of purinergic signaling components specifically in painful inflammation, with levels increased more in women as compared to men. Inflammatory dental pain is common and potentially debilitating; as inflammation of the dental pulp can occur with or without pain, it provides a powerful model to examine distinct pain pathways in humans. In control tissues, P2X3 and P2X2 receptors colocalized with PGP9.5-positive nerves. Expression of the ecto-nucleotidase NTPDase1 (CD39) increased with exposure to extracellular adenosine triphosphate (ATP), implying CD39 acted as a marker for sustained elevation of extracellular ATP. Both immunohistochemistry and immunoblots showed P2X2, P2X3, and CD39 increased in symptomatic pulpitis, suggesting receptors and the ATP agonist were elevated in patients with increased pain. The increased expression of P2X3 and CD39 was more frequently observed in women than men. In summary, this study identifies CD39 as a marker for chronic elevation of extracellular ATP in fixed human tissue. It supports a role for increased purinergic signaling in humans with inflammatory dental pain and suggests the contribution of purines shows sexual dimorphism. This highlights the potential for P2X antagonists to treat pain in humans and stresses the need to consider sex in clinical trials that target pain and purinergic pathways. PERSPECTIVE: This article demonstrates an elevation of ATP-marker CD39 and of ATP receptors P2X2 and P2X3 with inflammatory pain and suggests the rise is greater in women. This highlights the potential for P2X antagonists to treat pain and stresses the consideration of sexual dimorphism in studies of purines and pain.


Subject(s)
Dental Pulp , Pain , Male , Humans , Female , Dental Pulp/metabolism , Inflammation/metabolism , Adenosine Triphosphate/metabolism , Purines
4.
Front Mol Neurosci ; 16: 1323431, 2023.
Article in English | MEDLINE | ID: mdl-38146334

ABSTRACT

Combined antiretroviral therapy (cART) has greatly decreased mortality and morbidity among persons with HIV; however, neurologic impairments remain prevalent, in particular HIV-associated neurocognitive disorders (HANDs). White matter damage persists in cART-treated persons with HIV and may contribute to neurocognitive dysfunction as the lipid-rich myelin membrane of oligodendrocytes is essential for efficient nerve conduction. Because of the importance of lipids to proper myelination, we examined the regulation of lipid synthesis in oligodendrocyte cultures exposed to the integrase strand transfer inhibitor elvitegravir (EVG), which is administered to persons with HIV as part of their initial regimen. We show that protein levels of genes involved in the fatty acid pathway were reduced, which correlated with greatly diminished de novo levels of fatty acid synthesis. In addition, major regulators of cellular lipid metabolism, the sterol regulatory element-binding proteins (SREBP) 1 and 2, were strikingly altered following exposure to EVG. Impaired oligodendrocyte differentiation manifested as a marked reduction in mature oligodendrocytes. Interestingly, most of these deleterious effects could be prevented by adding serum albumin, a clinically approved neuroprotectant. These new findings, together with our previous study, strengthen the possibility that antiretroviral therapy, at least partially through lipid dysregulation, may contribute to the persistence of white matter changes observed in persons with HIV and that some antiretrovirals may be preferable as life-long therapy.

5.
J Acquir Immune Defic Syndr ; 94(2S): S13-S20, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37707843

ABSTRACT

BACKGROUND: The Centers for AIDS Research Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI) aims to establish programs to develop pathways for successful careers in HIV science among scholars from underrepresented racial and ethnic populations. This article describes cross-site evaluation outcomes during the first 18 months (July 2021-December 2022) across 15 programs. METHODS: The aims of the evaluation were to characterize participants, describe feasibility, challenges, and successes of the programs and provide a basis for the generalizability of best practices to Diversity, Equity, and Inclusion (DEI) programs in the United States. Two primary data collection methods were used: a quarterly programmatic monitoring process and a centrally managed, individual-level, participant quantitative and qualitative survey. RESULTS: During the first year of evaluation data collection, 1085 racially and ethnically diverse scholars ranging from the high school to postdoctoral levels applied for CDEIPI programs throughout the United States. Of these, 257 (23.7%) were selected to participate based on program capacity and applicant qualifications. Participants were trained by 149 mentors, teachers, and staff. Of the N = 95 participants responding to the individual-level survey, 95.7% agreed or strongly agreed with statements of satisfaction with the program, 96.8% planned to pursue further education, and 73.7% attributed increased interest in a variety of HIV science topics to the program. Qualitative findings suggest strong associations between mentorship, exposure to scientific content, and positive outcomes. CONCLUSIONS: These data provide evidence to support the feasibility and impact of novel DEI programs in HIV research to engage and encourage racially and ethnically diverse scholars to pursue careers in HIV science.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Humans , Minority Groups , Ethnicity , Ethnic and Racial Minorities , Diversity, Equity, Inclusion , Students
6.
J Acquir Immune Defic Syndr ; 94(2S): S28-S35, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37707845

ABSTRACT

BACKGROUND: Demographic diversity is not represented in the HIV/AIDS workforce. Engagement of underrepresented trainees as early as high school may address this disparity. METHODS: We established the Penn Center for AIDS Research (CFAR) Scholars Program, a mentored research experience for underrepresented minority (URM) trainees spanning educational stages from high school to medical school. The program provides participants with tailored educational programming, professional skill building, and mentored research experiences. We conducted qualitative interviews with scholar, mentor, and leadership groups to evaluate the program's impact. RESULTS: Eleven participants were selected to partake in 1 of 5 existing mentored research programs as CFAR scholars. Scholars attended an 8-week HIV Seminar Series that covered concepts in the basic, clinical, behavioral, and community-based HIV/AIDS research. Program evaluation revealed that scholars' knowledge of HIV pathophysiology and community impact increased because of these seminars. In addition, they developed tangible skills in literature review, bench techniques, qualitative assessment, data analysis, and professional network building. Scholars reported improved academic self-efficacy and achieved greater career goal clarity. Areas for improvement included clarification of mentor-mentee roles, expectations for longitudinal mentorship, and long-term engagement between scholars. Financial stressors, lack of social capital, and structural racism were identified as barriers to success for URM trainees. CONCLUSION: The Penn CFAR Scholars Program is a novel mentored research program that successfully engaged URM trainees from early educational stages. Barriers and facilitators to sustained efforts of diversifying the HIV/AIDS workforce were identified and will inform future program planning.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Humans , HIV Infections/prevention & control , Workforce , Educational Status , Schools
7.
J Acquir Immune Defic Syndr ; 94(2S): S5-S12, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37707842

ABSTRACT

BACKGROUND: There is an urgent need to increase diversity among scientific investigators in the HIV research field to be more reflective of communities highly affected by the HIV epidemic. Thus, it is critical to promote the inclusion and advancement of early-stage scholars from racial and ethnic groups underrepresented in HIV science and medicine. METHODS: To widen the HIV research career pathway for early-stage scholars from underrepresented minority groups, the National Institutes of Health supported the development of the Centers for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI). This program was created through partnerships between CFARs and Historically Black Colleges and Universities and other Minority Serving Institutions throughout the United States. RESULTS: Seventeen CFARs and more than 20 Historically Black Colleges and Universities and Minority Serving Institutions have participated in this initiative to date. Programs were designed for the high school (8), undergraduate (13), post baccalaureate (2), graduate (12), and postdoctoral (4) levels. Various pedagogical approaches were used including didactic seminar series, intensive multiday workshops, summer residential programs, and mentored research internship opportunities. During the first 18 months of the initiative, 257 student scholars participated in CDEIPI programs including 150 high school, 73 undergraduate, 3 post baccalaureate, 27 graduate, and 4 postdoctoral students. CONCLUSION: Numerous student scholars from a wide range of educational levels, geographic backgrounds, and racial and ethnic minority groups have engaged in CDEIPI programs. Timely and comprehensive program evaluation data will be critical to support a long-term commitment to this unique training initiative.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , United States , Humans , Ethnicity , Diversity, Equity, Inclusion , Minority Groups
8.
Curr HIV/AIDS Rep ; 20(2): 19-28, 2023 04.
Article in English | MEDLINE | ID: mdl-36809477

ABSTRACT

PURPOSE OF REVIEW: : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS: Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.


Subject(s)
HIV Infections , Humans , Adolescent , Young Adult , Aged , Adult , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/pathology , Brain/diagnostic imaging , Brain/pathology , CD4-Positive T-Lymphocytes , Neuroimaging , Frontal Lobe
10.
J Neurochem ; 165(5): 722-740, 2023 06.
Article in English | MEDLINE | ID: mdl-36718947

ABSTRACT

White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin. Mechanistic studies utilizing primary rat oligodendrocyte precursor cells (OPCs) revealed that treatment with BIC leads to significant decrease in mature oligodendrocytes accompanied by lysosomal deacidification and impairment of lysosomal degradative capacity with no alterations in lysosomal membrane permeability or total lysosome number. Activation of the endolysosomal cation channel TRPML1 prevents both lysosomal deacidification and impairment of oligodendrocyte differentiation by BIC. Lastly, we show that deacidification of lysosomes by compounds that raise lysosomal pH is sufficient to prevent maturation of oligodendrocytes. Overall, this study has uncovered a critical role for lysosomal acidification in modulating oligodendrocyte function and has implications for neurologic diseases characterized by lysosomal dysfunction and white matter abnormalities.


Subject(s)
Demyelinating Diseases , Rats , Animals , Mice , Demyelinating Diseases/pathology , Myelin Sheath/pathology , Cuprizone , Oligodendroglia/pathology , Lysosomes/pathology , Cell Differentiation , Mice, Inbred C57BL
11.
Front Mol Neurosci ; 16: 1353562, 2023.
Article in English | MEDLINE | ID: mdl-38348237

ABSTRACT

The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.

12.
Cells ; 11(19)2022 09 22.
Article in English | MEDLINE | ID: mdl-36230925

ABSTRACT

Neurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer's disease (AD), including intra- and extracellular amyloid-beta (Aß) peptide aggregates. Aß peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1. However, this is precluded by cleavage of APP by the non-amyloidogenic alpha secretase, ADAM10. Previous studies have found that BACE1 expression was increased in the CNS of PWH with HAND as well as animal models of HAND. Further, BACE1 contributed to neurotoxicity. Yet in in vitro models, the role of ADAM10 and its potential regulatory mechanisms had not been examined. To address this, primary rat cortical neurons were treated with supernatants from HIV-infected human macrophages (HIV/MDMs). We found that HIV/MDMs decreased levels of both ADAM10 and Sirtuin1 (SIRT1), a regulator of ADAM10 that is implicated in aging and in AD. Both decreases were blocked with NMDA receptor antagonists, and treatment with NMDA was sufficient to induce reduction in ADAM10 and SIRT1 protein levels. Furthermore, decreases in SIRT1 protein levels were observed at an earlier time point than the decreases in ADAM10 protein levels, and the reduction in SIRT1 was reversed by proteasome inhibitor MG132. This study indicates that HIV-associated insults, particularly excitotoxicity, contribute to changes of APP secretases by downregulating levels of ADAM10 and its regulator.


Subject(s)
Alzheimer Disease , HIV Infections , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Humans , Membrane Proteins/metabolism , N-Methylaspartate , Proteasome Inhibitors , Rats , Receptors, N-Methyl-D-Aspartate , Sirtuin 1/metabolism
13.
Proc Natl Acad Sci U S A ; 119(43): e2202736119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252013

ABSTRACT

Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.


Subject(s)
Copper , Fluorescent Dyes , Copper/metabolism , Fluorescent Dyes/chemistry , Glutathione/metabolism , Imidazoles , Oncogenes , Oxidation-Reduction
14.
J Pharmacol Toxicol Methods ; 114: 107157, 2022.
Article in English | MEDLINE | ID: mdl-35143957

ABSTRACT

INTRODUCTION: Despite viral suppression due to combination antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) continue to affect half of people with HIV, suggesting that certain antiretrovirals (ARVs) may contribute to HAND. METHODS: We examined the effects of nucleoside/nucleotide reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) and the integrase inhibitors dolutegravir (DTG) and elvitegravir (EVG) on viability, structure, and function of glutamatergic neurons (a subtype of CNS neuron involved in cognition) derived from human induced pluripotent stem cells (hiPSC-neurons), and primary human neural precursor cells (hNPCs), which are responsible for neurogenesis. RESULTS: Using automated digital microscopy and image analysis (high content analysis, HCA), we found that DTG, EVG, and TDF decreased hiPSC-neuron viability, neurites, and synapses after 7 days of treatment. Analysis of hiPSC-neuron calcium activity using Kinetic Image Cytometry (KIC) demonstrated that DTG and EVG also decreased the frequency and magnitude of intracellular calcium transients. Longer ARV exposures and simultaneous exposure to multiple ARVs increased the magnitude of these neurotoxic effects. Using the Microscopic Imaging of Epigenetic Landscapes (MIEL) assay, we found that TDF decreased hNPC viability and changed the distribution of histone modifications that regulate chromatin packing, suggesting that TDF may reduce neuroprogenitor pools important for CNS development and maintenance of cognition in adults. CONCLUSION: This study establishes human preclinical assays that can screen potential ARVs for CNS toxicity to develop safer cART regimens and HAND therapeutics.


Subject(s)
HIV Infections , Induced Pluripotent Stem Cells , Neural Stem Cells , Adult , Epigenesis, Genetic , HIV Infections/drug therapy , Humans , Image Cytometry , Neurons
15.
Viruses ; 13(7)2021 06 26.
Article in English | MEDLINE | ID: mdl-34206839

ABSTRACT

The persistence of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) in the era of effective antiretroviral therapy suggests that modern HIV neuropathogenesis is driven, at least in part, by mechanisms distinct from the viral life cycle. Identifying more subtle mechanisms is complicated by frequent comorbidities in HIV+ populations. One of the common confounds is substance abuse, with cannabis being the most frequently used psychoactive substance among people living with HIV. The psychoactive effects of cannabis use can themselves mimic, and perhaps magnify, the cognitive deficits observed in HAND; however, the neuromodulatory and anti-inflammatory properties of cannabinoids may counter HIV-induced excitotoxicity and neuroinflammation. Here, we review our understanding of the cross talk between HIV and cannabinoids in the central nervous system by exploring both clinical observations and evidence from preclinical in vivo and in vitro models. Additionally, we comment on recent advances in human, multi-cell in vitro systems that allow for more translatable, mechanistic studies of the relationship between cannabinoid pharmacology and this uniquely human virus.


Subject(s)
Anti-HIV Agents/therapeutic use , Cannabinoids/therapeutic use , HIV Infections/complications , HIV Infections/therapy , HIV-1/drug effects , Neuroinflammatory Diseases/therapy , Animals , Anti-HIV Agents/pharmacology , Cannabinoids/pharmacology , Cannabinoids/standards , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Mice , Psychotropic Drugs/pharmacology , Psychotropic Drugs/standards , Psychotropic Drugs/therapeutic use
16.
Glia ; 69(9): 2252-2271, 2021 09.
Article in English | MEDLINE | ID: mdl-34058792

ABSTRACT

Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.


Subject(s)
HIV Infections , Oligodendrocyte Precursor Cells , Animals , Cell Differentiation , Cells, Cultured , Glutamic Acid/metabolism , HIV Infections/pathology , Humans , Neuroinflammatory Diseases , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Rats
17.
J Neuroimmune Pharmacol ; 16(1): 71-73, 2021 03.
Article in English | MEDLINE | ID: mdl-33649998

ABSTRACT

Persistence of cognitive, behavioral and, to a lesser extent, motor dysfunction in People living with HIV (PLWH) despite viral suppression has raised the question about the potential contribution of antiretroviral (ARV) compounds themselves. Converging clinical and experimental evidence support a contribution of ARV compounds. In this issue we explore the existing clinical evidence on the impact of antiretroviral therapy (ART) on the CNS across the age continuum and in women. We further examine cell type specific effects of ARV drugs as well as the class specific effects. Finally, underlying mechanisms for the observed clinical and experimental ARV-induced effects are discussed. To improve the quality of life for PLWH who are dependent on life-long ART for viral suppression, it is critical to minimize ARV-induced cellular and tissue dysfunction in the CNS.


Subject(s)
Anti-HIV Agents/therapeutic use , Central Nervous System/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , Anti-HIV Agents/pharmacology , Drug Interactions , Female , Humans , Male , Quality of Life
18.
J Neuroimmune Pharmacol ; 16(1): 169-180, 2021 03.
Article in English | MEDLINE | ID: mdl-31776836

ABSTRACT

Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology. Our group has previously demonstrated that two ARV compounds from the protease inhibitor (PI) class, ritonavir and lopinavir, inhibit oligodendrocyte maturation and myelin protein production. We hypothesized that other members of the PI class, saquinavir and darunavir, could also negatively impact oligodendrocyte differentiation. Here we demonstrate that treating primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either ARV drug results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Furthermore, we show that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- and darunavir-induced inhibition of oligodendrocyte maturation. Moreover, our findings suggest, for the first time, an imperative role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against ARV-induced oligodendrocyte dysregulation. Graphical Abstract Treatment of primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either antiretroviral compound of the protease inhibitor class, darunavir or saquinavir, results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Additionally, in darunavir or saquinavir-treated cultures we observed a concentration-dependent decrease in the number of acidic lysosomes, via immunostaining with LysoTracker Red, compared with vehicle-treated cultures. Finally, we showed that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- or darunavir-induced inhibition of oligodendrocyte maturation. Our findings suggest, for the first time, a critical role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against antiretroviral-induced oligodendrocyte dysregulation.


Subject(s)
Darunavir/pharmacology , Endosomes/drug effects , HIV Protease Inhibitors/pharmacology , Lysosomes/drug effects , Oligodendroglia/drug effects , Saquinavir/pharmacology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Darunavir/toxicity , Depression, Chemical , Dose-Response Relationship, Drug , Endosomes/chemistry , HIV Protease Inhibitors/toxicity , Hydrogen-Ion Concentration , Lysosomes/chemistry , Myelin Proteins/biosynthesis , Oxidative Stress , Phthalimides/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Saquinavir/toxicity , Transient Receptor Potential Channels/agonists
19.
Glia ; 69(2): 362-376, 2021 02.
Article in English | MEDLINE | ID: mdl-32894619

ABSTRACT

Regardless of adherence to combined antiretroviral therapy, white matter and myelin pathologies persist in patients with HIV-associated neurocognitive disorders, a spectrum of cognitive, motor, and behavioral impairments. We hypothesized that antiretroviral therapy alters the maturation of oligodendrocytes which synthesize myelin. We tested whether specific frontline integrase strand transfer inhibitors would alter oligodendrocyte differentiation and myelination. To model the effect of antiretrovirals on oligodendrocytes, we stimulated primary rat oligodendrocyte precursor cells to differentiate into mature oligodendrocytes in vitro in the presence of therapeutically relevant concentrations of elvitegravir or raltegravir and then assessed differentiation with lineage specific markers. To examine the effect of antiretrovirals on myelination, we treated mice with the demyelinating compound cuprizone, for 5 weeks. This was followed by 3 weeks of recovery in absence of cuprizone, during which time some mice received a daily intrajugular injection of elvitegravir. Brains were harvested, sectioned and processed by immunohistochemistry to examine oligodendrocyte maturation and myelination. Elvitegravir inhibited oligodendrocyte differentiation in vitro in a concentration-dependent manner, while raltegravir had no effect. Following cuprizone demyelination, administration of elvitegravir to adult mice reduced remyelination compared with control animals. Elvitegravir treatment activated the integrated stress response in oligodendrocytes in vitro, an effect which was completely blocked by pretreatment with the integrated stress response inhibitor Trans-ISRIB, preventing elvitegravir-mediated inhibition of oligodendrocyte maturation. These studies demonstrate that elvitegravir impairs oligodendrocyte maturation and remyelination and that the integrated stress response mediates this effect and may be a possible therapeutic target.


Subject(s)
Oligodendroglia , Animals , Cell Differentiation , Cuprizone , HIV Infections , Humans , Integrases , Mice , Mice, Inbred C57BL , Myelin Sheath , Quinolones , Raltegravir Potassium , Rats
20.
STAR Protoc ; 1(3): 100190, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377084

ABSTRACT

This protocol establishes a tri-culture of hiPSC-derived neurons, astrocytes, and microglia for the study of cellular interactions during homeostasis, injury, and disease. This system allows for mechanistic studies that can identify the roles of individual cell types in disease and injury response in a physiologically relevant, all-human system. This protocol utilizes and modifies prior differentiations. Limitations include the prolonged maturation of human astrocytes and neurons and scalability. For complete details on the use and execution of this protocol, please refer to Ryan et al. (2020).


Subject(s)
Cell Culture Techniques/methods , Coculture Techniques/methods , Action Potentials , Astrocytes/metabolism , Cell Communication , Cell Differentiation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Microglia/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...