Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 21(1): 79-90, 1997 Jan.
Article in English | MEDLINE | ID: mdl-8994211

ABSTRACT

Cerebrovascular disease exemplifies the poor regenerative capacity of the CNS. While there are methods to prevent cerebral infarction, there is no effective therapy available to ameliorate the anatomical, neurochemical and behavioral deficits which follow cerebral ischemia. Focal and transient occlusion of the middle cerebral artery (MCA) in rodents has been reported to result in neuropathology similar to that seen in clinical cerebral ischemia. Using specific techniques, this MCA occlusion can result in a well-localized infarct of the striatum. This review article will provide data accumulated from animal studies using the MCA occlusion technique in rodents to examine whether neural transplantation can ameliorate behavioral and morphological deficits associated with cerebral infarction. Recent advances in neural transplantation as a treatment modality for neurodegenerative disorders such as Parkinson's disease, have revealed that fetal tissue transplantation may produce neurobehavioral recovery. Accordingly, fetal tissue transplantation may provide a potential therapy for cerebral infarction. Preliminary findings in rodents subjected to unilateral MCA occlusion, and subsequently transplanted with fetal striatal tissue into the infarcted striatum have produced encouraging results. Transplanted fetal tissue, assessed immunohistochemically, has been demonstrated to survive and integrate with the host tissue, and, more importantly, ameliorate the ischemia-related behavioral deficits, at least in the short term. Although, this review will focus primarily on cerebral ischemia, characterized by a localized CNS lesion within the striatum, it is envisioned that this baseline data may be extrapolated and applied to cerebral infarction in other brain areas.


Subject(s)
Brain Ischemia/surgery , Brain Tissue Transplantation/physiology , Hippocampus/transplantation , Animals , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...