Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(47): 18045-18052, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37990859

ABSTRACT

Lithium-ion batteries are nowadays a mature technology for energy storage. However, some safety problems have been identified during their operation in high power applications such as fire incidents in electric vehicles. The most promising solution to improve the safety of lithium-ion batteries is replacing the current organic liquid based electrolytes with solid electrolytes. In this context, new solid electrolytes having chemical and electrochemical stability with high ionic conductivity need to be discovered. Therefore, in the present study, a new LGPS-type structural domain is highlighted for the Li-B-P-S system. Ionic conductivities of up to 10-4 S cm-1 have been achieved for prepared solid electrolytes in the Li-B-P-S system, and higher stability against lithium metal as compared to Li10GeP2S12. These solid electrolytes also show better electrochemical characteristics in all solid-state batteries.

2.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374174

ABSTRACT

Embedding silicon nanoparticles in an intermetallic matrix is a promising strategy to produce remarkable bulk anode materials for lithium-ion (Li-ion) batteries with low potential, high electrochemical capacity and good cycling stability. These composite materials can be synthetized at a large scale using mechanical milling. However, for Si-Ni3Sn4 composites, milling also induces a chemical reaction between the two components leading to the formation of free Sn and NiSi2, which is detrimental to the performance of the electrode. To prevent this reaction, a modification of the surface chemistry of the silicon has been undertaken. Si nanoparticles coated with a surface layer of either carbon or oxide were used instead of pure silicon. The influence of the coating on the composition, (micro)structure and electrochemical properties of Si-Ni3Sn4 composites is studied and compared with that of pure Si. Si coating strongly reduces the reaction between Si and Ni3Sn4 during milling. Moreover, contrary to pure silicon, Si-coated composites have a plate-like morphology in which the surface-modified silicon particles are surrounded by a nanostructured, Ni3Sn4-based matrix leading to smooth potential profiles during electrochemical cycling. The chemical homogeneity of the matrix is more uniform for carbon-coated than for oxygen-coated silicon. As a consequence, different electrochemical behaviors are obtained depending on the surface chemistry, with better lithiation properties for the carbon-covered silicon able to deliver over 500 mAh/g for at least 400 cycles.

3.
Anal Chem ; 92(4): 3023-3031, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-31961659

ABSTRACT

X-ray photoemission electron microscopy (XPEEM), with its excellent spatial resolution, is a well-suited technique for elucidating the complex electrode-electrolyte interface reactions in Li-ion batteries. It provides element-specific contrast images that allows the study of the surface morphology and the identification of the various components of the composite electrode. It also enables the acquisition of local X-ray absorption spectra (XAS) on single particles of the electrode, such as the C and O K-edges to track the stability of carbonate-based electrolytes, F K-edge to study the electrolyte salt and binder stability, and the transition metal L-edges to gain insights into the oxidation/reduction processes of positive and negative active materials. Here we discuss the optimal measurement conditions for XPEEM studies of Li-ion battery systems, including (i) electrode preparation through mechanical pressing to reduce surface roughness for improved spatial resolution; (ii) corrections of the XAS spectra at the C K-edge to remove the carbon signal contribution originating from the X-ray optics; and (iii) procedures for minimizing the effect of beam damage. Examples from our recent work are provided to demonstrate the strength of XPEEM to solve challenging interface reaction mechanisms via post mortem measurements. Finally, we present a first XPEEM cell dedicated to operando/in situ experiments in all-solid-state batteries. Representative measurements were carried out on a graphite electrode cycled with LiI-incorporated sulfide-based electrolyte. This measurement demonstrates the strong competitive reactions between the lithiated graphite surface and the Li2O formation caused by the reaction of the intercalated lithium with the residual oxygen in the vacuum chamber. Moreover, we show the versatility of the operando XPEEM cell to investigate other active materials, for example, Li4Ti5O12.

SELECTION OF CITATIONS
SEARCH DETAIL
...