Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 139(21): 3111-3126, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35213692

ABSTRACT

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Subject(s)
Anemia, Diamond-Blackfan , Proteins , Active Transport, Cell Nucleus/genetics , Anemia, Diamond-Blackfan/metabolism , Humans , Mutation , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
RNA Biol ; 18(4): 510-522, 2021 04.
Article in English | MEDLINE | ID: mdl-32882145

ABSTRACT

Prp43 is a DEAH-box RNA helicase involved in both splicing and ribosome biogenesis. Its activities are directly stimulated by several co-activators that share a G-patch domain. The substrates of Prp43, its mechanism of action and the modes of interaction with and activation by G-patch proteins have been only partially characterized. We investigated how Pfa1 and PINX1, two G-patch proteins involved in ribosome biogenesis, interact with Prp43. We demonstrate that a protruding loop connecting the ß4 and ß5 strands of Prp43 OB fold is crucial for the binding of the G-patch domain of Pfa1. However, neither this loop nor the entire OB fold of Prp43 is essential for PINX1 binding. We conclude that the binding modes of Pfa1 and PINX1 G-patches to Prp43 are different. Nevertheless, stimulation of the ATPase and helicase activities of Prp43 by both full-length Pfa1 and PINX1 requires the ß4-ß5 loop. Moreover, we show that disruption of this loop completely abrogates Prp43 activity during yeast ribosome biogenesis but does not prevent its integration within pre-ribosomal particles. We propose that the ß4-ß5 loop plays a crucial role in the transmission of conformational changes induced by binding of the G-patch to Prp43 active site and substrate RNA.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Catalytic Domain/genetics , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Escherichia coli/genetics , Organisms, Genetically Modified , Protein Binding , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
3.
Nucleic Acids Res ; 47(14): 7548-7563, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31188444

ABSTRACT

Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.


Subject(s)
DEAD-box RNA Helicases/chemistry , Protein Domains , Ribosome Subunits, Small/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Base Pairing , Binding Sites/genetics , Crystallography, X-Ray , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Models, Molecular , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
PLoS Genet ; 14(8): e1007597, 2018 08.
Article in English | MEDLINE | ID: mdl-30169518

ABSTRACT

The early steps of the production of the large ribosomal subunit are probably the least understood stages of eukaryotic ribosome biogenesis. The first specific precursor to the yeast large ribosomal subunit, the first pre-60S particle, contains 30 assembly factors (AFs), including 8 RNA helicases. These helicases, presumed to drive conformational rearrangements, usually lack substrate specificity in vitro. The mechanisms by which they are targeted to their correct substrate within pre-ribosomal particles and their precise molecular roles remain largely unknown. We demonstrate that the Dbp6p helicase, essential for the normal accumulation of the first pre-60S pre-ribosomal particle in S. cerevisiae, associates with a complex of four AFs, namely Npa1p, Npa2p, Nop8p and Rsa3p, prior to their incorporation into the 90S pre-ribosomal particles. By tandem affinity purifications using yeast extracts depleted of one component of the complex, we show that Npa1p forms the backbone of the complex. We provide evidence that Npa1p and Npa2p directly bind Dbp6p and we demonstrate that Npa1p is essential for the insertion of the Dbp6p helicase within 90S pre-ribosomal particles. In addition, by an in vivo cross-linking analysis (CRAC), we map Npa1p rRNA binding sites on 25S rRNA adjacent to the root helices of the first and last secondary structure domains of 25S rRNA. This finding supports the notion that Npa1p and Dbp6p function in the formation and/or clustering of root helices of large subunit rRNAs which creates the core of the large ribosomal subunit RNA structure. Npa1p also crosslinks to snoRNAs involved in decoding center and peptidyl transferase center modifications and in the immediate vicinity of the binding sites of these snoRNAs on 25S rRNA. Our data suggest that the Dbp6p helicase and the Npa1p complex play key roles in the compaction of the central core of 25S rRNA and the control of snoRNA-pre-rRNA interactions.


Subject(s)
Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , RNA Helicases/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DEAD-box RNA Helicases/metabolism , Escherichia coli , Models, Molecular , Peptidyl Transferases/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA Precursors/metabolism , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/metabolism , Recombinant Proteins , Ribosomal Proteins/metabolism , Substrate Specificity , Trans-Activators/metabolism
5.
Nucleic Acids Res ; 45(18): 10824-10836, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28977579

ABSTRACT

Cytoplasmic maturation of precursors to the small ribosomal subunit in yeast requires the intervention of a dozen assembly factors (AFs), the precise roles of which remain elusive. One of these is Rio1p that seems to intervene at a late step of pre-40S particle maturation. We have investigated the role played by Rio1p in the dynamic association and dissociation of AFs with and from pre-40S particles. Our results indicate that Rio1p depletion leads to the stalling of at least 4 AFs (Nob1p, Tsr1p, Pno1p/Dim2p and Fap7p) in 80S-like particles. We conclude that Rio1p is important for the timely release of these factors from 80S-like particles. In addition, we present immunoprecipitation and electron microscopy evidence suggesting that when Rio1p is depleted, a subset of Nob1p-containing pre-40S particles associate with translating polysomes. Using Nob1p as bait, we purified pre-40S particles from cells lacking Rio1p and performed ribosome profiling experiments which suggest that immature 40S subunits can carry out translation elongation. We conclude that lack of Rio1p allows premature entry of pre-40S particles in the translation process and that the presence of Nob1p and of the 18S rRNA 3' extension in the 20S pre-rRNA is not incompatible with translation elongation.


Subject(s)
Adenosine Triphosphatases/physiology , Protein Biosynthesis , Protein Serine-Threonine Kinases/physiology , Ribosome Subunits, Small, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/physiology , Nuclear Proteins/metabolism , Peptide Chain Elongation, Translational , Polyribosomes/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...