Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 47(1): 73-95, 2021 02.
Article in English | MEDLINE | ID: mdl-32484610

ABSTRACT

AIMS: Plectin, a universally expressed multi-functional cytolinker protein, is crucial for intermediate filament networking, including crosstalk with actomyosin and microtubules. In addition to its involvement in a number of diseases affecting skin, skeletal muscle, heart, and other stress-exposed tissues, indications for a neuropathological role of plectin have emerged. Having identified P1c as the major isoform expressed in neural tissues in previous studies, our aim for the present work was to investigate whether, and by which mechanism(s), the targeted deletion of this isoform affects neuritogenesis and proper nerve cell functioning. METHODS: For ex vivo phenotyping, we used dorsal root ganglion and hippocampal neurons derived from isoform P1c-deficient and plectin-null mice, complemented by in vitro experiments using purified proteins and cell fractions. To assess the physiological significance of the phenotypic alterations observed in P1c-deficient neurons, P1c-deficient and wild-type littermate mice were subjected to standard behavioural tests. RESULTS: We demonstrate that P1c affects axonal microtubule dynamics by isoform-specific interaction with tubulin. P1c deficiency in neurons leads to altered dynamics of microtubules and excessive association with tau protein, affecting neuritogenesis, neurite branching, growth cone morphology, and translocation and directionality of movement of vesicles and mitochondria. On the organismal level, we found P1c deficiency manifesting as impaired pain sensitivity, diminished learning capabilities and reduced long-term memory of mice. CONCLUSIONS: Revealing a regulatory role of plectin scaffolds in microtubule-dependent nerve cell functions, our results have potential implications for cytoskeleton-related neuropathies.


Subject(s)
Memory/physiology , Neurons/metabolism , Organelles/metabolism , Pain/metabolism , tau Proteins/metabolism , Animals , Intermediate Filaments/metabolism , Mice , Microtubules/metabolism , Pain/physiopathology , Plectin/deficiency
2.
Neuroscience ; 201: 57-66, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22123165

ABSTRACT

Hormone secretion is mediated by Ca(2+)-regulated exocytosis. The key step of this process consists of the merger of the vesicle and the plasma membranes, leading to the formation of a fusion pore. This is an aqueous channel through which molecules stored in the vesicle lumen exit into the extracellular space on stimulation. Here we studied the effect of sub-lethal dose of aluminium on prolactin secretion in isolated rat pituitary lactotrophs with an enzyme immunoassay and by monitoring electrophysiologically the interaction of a single vesicle with the plasma membrane in real time, by monitoring membrane capacitance. After 24-h exposure to sub-lethal AlCl(3) (30 µM), the secretion of prolactin was reduced by 14±8% and 46±11% under spontaneous and K(+)-stimulated conditions, respectively. The frequency of unitary exocytotic events, recorded by the high-resolution patch-clamp monitoring of membrane capacitance, a parameter linearly related to the membrane area, under spontaneous and stimulated conditions, was decreased in aluminium-treated cells. Moreover, while the fusion pore dwell-time was increased in the presence of aluminium, the fusion pore conductance, a measure of fusion pore diameter, was reduced, both under spontaneous and stimulated conditions. These results suggest that sub-lethal aluminium concentrations reduce prolactin secretion downstream of the stimulus secretion coupling by decreasing the frequency of unitary exocytotic events and by stabilizing the fusion pore diameter to a value smaller than prolactin molecule, thus preventing its discharge into the extracellular space.


Subject(s)
Aluminum Compounds/pharmacology , Biophysical Phenomena/drug effects , Chlorides/pharmacology , Lactotrophs/drug effects , Membrane Fusion/drug effects , Pituitary Gland/cytology , Prolactin/metabolism , Aluminum Chloride , Animals , Cells, Cultured , Electric Capacitance , Electric Stimulation , Exocytosis/drug effects , Male , Membrane Fusion/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...