Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lymphat Res Biol ; 22(3): 195-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699876

ABSTRACT

Background: Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. It affects an estimated five million Americans. There is no cure for this disease. Assessing lymphatic growth is essential in developing novel therapeutics. Intravital microscopy (IVM) is a powerful imaging tool for investigating various biological processes in live animals. Tissue nanotransfection technology (TNT) facilitates a direct, transcutaneous nonviral vector gene delivery using a chip with nanochannel poration in a rapid (<100 ms) focused electric field. TNT was used in this study to deliver the genetic cargo in the murine tail lymphedema to assess the lymphangiogenesis. The purpose of this study is to experimentally evaluate the applicability of IVM to visualize and quantify lymphatics in the live mice model. Methods and Results: The murine tail model of lymphedema was utilized. TNT was applied to the murine tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: TNTpCMV6 group receives pCMV6 (expression vector backbone alone) (n = 6); TNTProx1 group receives pCMV6-Prox1 (n = 6). Lymphatic vessels (fluorescein isothiocyanate [FITC]-dextran stained) and lymphatic branch points (indicating lymphangiogenesis) were analyzed with the confocal/multiphoton microscope. The experimental group TNTProx1 exhibited reduced postsurgical tail lymphedema and increased lymphatic distribution compared to TNTpCMV6 group. More lymphatic branching points (>3-fold) were observed at the TNT site in TNTProx1 group. Conclusions: This study demonstrates a novel, powerful imaging tool for investigating lymphatic vessels in live murine tail model of lymphedema. IVM can be utilized for functional assessment of lymphatics and visualization of lymphangiogenesis following gene-based therapy.


Subject(s)
Disease Models, Animal , Intravital Microscopy , Lymphangiogenesis , Lymphatic Vessels , Lymphedema , Tail , Animals , Lymphedema/pathology , Lymphedema/diagnostic imaging , Lymphedema/metabolism , Lymphedema/genetics , Mice , Intravital Microscopy/methods , Lymphatic Vessels/diagnostic imaging , Lymphatic Vessels/pathology , Lymphatic Vessels/metabolism , Female , Gene Transfer Techniques
2.
Mol Ther Nucleic Acids ; 35(1): 102121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38333673

ABSTRACT

Lymphedema is chronic limb swelling resulting from lymphatic dysfunction. There is no cure for the disease. Clinically, a preventive surgical approach called immediate lymphatic reconstruction (ILR) has gained traction. Experimental gene-based therapeutic approaches (e.g., using viral vectors) have had limited translational applicability. Tissue nanotransfection (TNT) technology uses a direct, transcutaneous nonviral vector, gene delivery using a chip with nanochannel poration in response to a rapid (<100 ms) focused electric field. The purpose of this study was to experimentally prevent lymphedema using focal delivery of a specific gene Prox1 (a master regulator of lymphangiogenesis). TNT was applied to the previously optimized lymphedematous mice tail (day 0) directly at the surgical site with genetic cargo loaded into the TNT reservoir: group I (sham) was given pCMV6 (expression vector backbone alone) and group II was treated with pCMV6-Prox1. Group II mice had decreased tail volume (47.8%) compared to sham and greater lymphatic clearance on lymphangiography. Immunohistochemistry showed greater lymphatic vessel density and RNA sequencing exhibited reduced inflammatory markers in group II compared to group I. Prox1 prophylactically delivered using TNT to the surgical site on the day of injury decreased the manifestations of lymphedema in the murine tail model compared to control.

SELECTION OF CITATIONS
SEARCH DETAIL
...