Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38115725

ABSTRACT

Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.

2.
Article in English | MEDLINE | ID: mdl-36939203

ABSTRACT

Ferroportin (Fpn)-expressed at the plasma membrane of macrophages, enterocytes, and hepatocytes-mediates the transfer of cellular iron into the blood plasma. Under the control of the iron-regulatory hormone hepcidin, Fpn serves a critical role in systemic iron homeostasis. Whereas we have previously characterized human Fpn, a great deal of research in iron homeostasis and disorders utilizes mouse models. By way of example, the flatiron mouse, a model of classical ferroportin disease, bears the mutation H32R in Fpn and is characterized by systemic iron deficiency and macrophage iron retention. The flatiron mouse also appears to exhibit a manganese phenotype, raising the possibility that mouse Fpn serves a role in manganese metabolism. At odds with this observation, we have found that human Fpn does not transport manganese, so we considered the possibility that a species difference could explain this discrepancy. We tested the hypothesis that mouse but not human Fpn can transport manganese and performed a comparative analysis of mouse and human Fpn. We examined the functional properties of human Fpn, mouse Fpn, and mutant mouse Fpn by using radiotracer assays in RNA-injected Xenopus oocytes. We found that neither mouse nor human Fpn transports manganese. Mouse and human Fpn share identical properties with respect to substrate profile, calcium dependence, optimal pH, and hepcidin sensitivity. We have also demonstrated that Fpn is not an ATPase pump. Our findings validate the use of mouse models of ferroportin function in iron homeostasis and disease.

3.
FEBS Open Bio ; 11(1): 26-34, 2021 01.
Article in English | MEDLINE | ID: mdl-33190422

ABSTRACT

Ferroportin (Fpn) is an essential mammalian iron transporter that is negatively regulated by the hormone hepcidin. Our current molecular understanding of Fpn-mediated iron efflux and regulation is limited due to a lack of biochemical, biophysical and high-resolution structural studies. A critical step towards understanding the transport mechanism of Fpn is to obtain sufficient quantities of pure and stable protein for downstream studies. As such, we detail here an expression and purification protocol for mouse Fpn yielding milligram quantities of pure protein. We have generated deletion constructs exhibiting enhanced thermal stability and which retained iron-transport activity and hepcidin responsiveness, providing a platform for further biophysical studies of Fpn.


Subject(s)
Cation Transport Proteins/isolation & purification , Animals , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Hepcidins/metabolism , Hot Temperature/adverse effects , Mice , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
4.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220458

ABSTRACT

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Subject(s)
Nephritis, Interstitial/virology , Parvovirus/isolation & purification , Parvovirus/pathogenicity , Animals , Australia , Disease Progression , Female , Fibrosis/pathology , Fibrosis/virology , Humans , Kidney/metabolism , Kidney/physiology , Male , Mice , Mice, Inbred C57BL , Nephritis, Interstitial/physiopathology , North America , Parvoviridae Infections/metabolism
5.
Nat Commun ; 9(1): 3075, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082682

ABSTRACT

Ferroportin (Fpn)-the only known cellular iron exporter-transports dietary and recycled iron into the blood plasma, and transfers iron across the placenta. Despite its central role in iron metabolism, our molecular understanding of Fpn-mediated iron efflux remains incomplete. Here, we report that Ca2+ is required for human Fpn transport activity. Whereas iron efflux is stimulated by extracellular Ca2+ in the physiological range, Ca2+ is not transported. We determine the crystal structure of a Ca2+-bound BbFpn, a prokaryotic orthologue, and find that Ca2+ is a cofactor that facilitates a conformational change critical to the transport cycle. We also identify a substrate pocket accommodating a divalent transition metal complexed with a chelator. These findings support a model of iron export by Fpn and suggest a link between plasma calcium and iron homeostasis.


Subject(s)
Calcium/chemistry , Cation Transport Proteins/chemistry , Animals , Binding Sites , Chelating Agents/chemistry , Crystallography, X-Ray , HEK293 Cells , Homeostasis , Humans , Iron/chemistry , Metals/chemistry , Mutagenesis , Oocytes/metabolism , Protein Conformation , Xenopus
6.
Blood ; 131(8): 899-910, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29237594

ABSTRACT

Nonclassical ferroportin disease (FD) is a form of hereditary hemochromatosis caused by mutations in the iron transporter ferroportin (Fpn), resulting in parenchymal iron overload. Fpn is regulated by the hormone hepcidin, which induces Fpn endocytosis and cellular iron retention. We characterized 11 clinically relevant and 5 nonclinical Fpn mutations using stably transfected, inducible isogenic cell lines. All clinical mutants were functionally resistant to hepcidin as a consequence of either impaired hepcidin binding or impaired hepcidin-dependent ubiquitination despite intact hepcidin binding. Mapping the residues onto 2 computational models of the human Fpn structure indicated that (1) mutations that caused ubiquitination-resistance were positioned at helix-helix interfaces, likely preventing the hepcidin-induced conformational change, (2) hepcidin binding occurred within the central cavity of Fpn, (3) hepcidin interacted with up to 4 helices, and (4) hepcidin binding should occlude Fpn and interfere with iron export independently of endocytosis. We experimentally confirmed hepcidin-mediated occlusion of Fpn in the absence of endocytosis in multiple cellular systems: HEK293 cells expressing an endocytosis-defective Fpn mutant (K8R), Xenopus oocytes expressing wild-type or K8R Fpn, and mature human red blood cells. We conclude that nonclassical FD is caused by Fpn mutations that decrease hepcidin binding or hinder conformational changes required for ubiquitination and endocytosis of Fpn. The newly documented ability of hepcidin and its agonists to occlude iron transport may facilitate the development of broadly effective treatments for hereditary iron overload disorders.


Subject(s)
Cation Transport Proteins/chemistry , Cation Transport Proteins/metabolism , Drug Resistance , Hepcidins/metabolism , Iron/metabolism , Animals , Binding Sites , Cation Transport Proteins/genetics , Cells, Cultured , Computer Simulation , Endocytosis , HEK293 Cells , Hepcidins/agonists , Humans , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Mutation , Oocytes/cytology , Oocytes/metabolism , Protein Binding , Protein Conformation , Protein Domains , Structure-Activity Relationship , Ubiquitination , Xenopus laevis
7.
PLoS One ; 12(9): e0184366, 2017.
Article in English | MEDLINE | ID: mdl-28880952

ABSTRACT

Hephaestin is a large membrane-anchored multicopper ferroxidase involved in mammalian iron metabolism. Newly absorbed dietary iron is exported across the enterocyte basolateral membrane by the ferrous iron transporter ferroportin, but hephaestin increases the efficiency of this process by oxidizing the transported iron to its ferric form and promoting its release from ferroportin. Deletion or mutation of the hephaestin gene leads to systemic anemia with iron accumulation in the intestinal epithelium. The crystal structure of human ceruloplasmin, another multicopper ferroxidase with 50% sequence identity to hephaestin, has provided a framework for comparative analysis and modelling. However, detailed structural information for hephaestin is still absent, leaving questions relating to metal coordination and binding sites unanswered. To obtain structural information for hephaestin, a reliable protocol for large-scale purification is required. Here, we present an expression and purification protocol of soluble mouse hephaestin, yielding milligram amounts of enzymatically active, purified protein using the baculovirus/insect cell system.


Subject(s)
Membrane Proteins/metabolism , Animals , Binding Sites , Blotting, Western , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Line , Ceruloplasmin/metabolism , Humans , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Protein Structure, Secondary
8.
Mol Biol Cell ; 28(8): 1066-1078, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28251925

ABSTRACT

RhoGTPases are important regulators of the cell cytoskeleton, controlling cell shape, migration and proliferation. Previously we showed that ARHGAP18 in endothelial cells is important in cell junctions. Here we show, using structured illumination microscopy (SIM), ground-state depletion (GSD), and total internal reflection fluorescence microscopy (TIRF) that a proportion of ARHGAP18 localizes to microtubules in endothelial cells, as well as in nonendothelial cells, an association confirmed biochemically. In endothelial cells, some ARHGAP18 puncta also colocalized to Weibel-Palade bodies on the microtubules. Depletion of ARHGAP18 by small interfering RNA or analysis of endothelial cells isolated from ARHGAP18-knockout mice showed microtubule destabilization, as evidenced by altered morphology and decreased acetylated α-tubulin and glu-tubulin. The destabilization was rescued by inhibition of ROCK and histone deacetylase 6 but not by a GAP-mutant form of ARHGAP18. Depletion of ARHGAP18 resulted in a failure to secrete endothelin-1 and a reduction in neutrophil transmigration, both known to be microtubule dependent. Thrombin, a critical regulator of the Rho-mediated barrier function of endothelial cells through microtubule destabilization, enhanced the plasma membrane-bound fraction of ARHGAP18. Thus, in endothelial cells, ARHGAP18 may act as a significant regulator of vascular homeostasis.


Subject(s)
Endothelial Cells/physiology , GTPase-Activating Proteins/physiology , Microtubules/physiology , Acetylation , Actins/metabolism , Animals , Cell Movement/physiology , Cells, Cultured , Cytoskeleton/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , GTPase-Activating Proteins/metabolism , HeLa Cells , Histone Deacetylase 6 , Histone Deacetylases/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Junctions/metabolism , Mice , Mice, Knockout , Microtubules/metabolism , Tubulin/metabolism , rho-Associated Kinases/metabolism
9.
Nat Commun ; 6: 8545, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26461048

ABSTRACT

In vertebrates, the iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin.


Subject(s)
Bdellovibrio/metabolism , Cation Transport Proteins/metabolism , Binding Sites , Cation Transport Proteins/chemistry , Humans , Iron/metabolism , Protein Conformation , Structural Homology, Protein
10.
Biophys J ; 107(12): L45-L48, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25517170

ABSTRACT

The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Guanosine Diphosphate/metabolism , Amino Acid Sequence , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanosine Diphosphate/chemistry , Humans , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Biosci Rep ; 34(6): e00158, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25374115

ABSTRACT

GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.


Subject(s)
Cation Transport Proteins/metabolism , Escherichia coli Proteins/metabolism , Guanosine Diphosphate/metabolism , Nucleotides/metabolism , Amino Acid Sequence , Binding Sites/genetics , Calorimetry/methods , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , GTP Phosphohydrolases/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Nucleotides/chemistry , Nucleotides/genetics , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Thermodynamics
12.
ACS Chem Biol ; 9(6): 1369-76, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24762008

ABSTRACT

The L-type amino acid transporter (LAT) family consists of four members (LAT1-4) that mediate uptake of neutral amino acids including leucine. Leucine is not only important as a building block for proteins, but plays a critical role in mTORC1 signaling leading to protein translation. As such, LAT family members are commonly upregulated in cancer in order to fuel increased protein translation and cell growth. To identify potential LAT-specific inhibitors, we established a function-based high-throughput screen using a prefractionated natural product library. We identified and purified two novel monoterpene glycosides, ESK242 and ESK246, sourced from a Queensland collection of the plant Pittosporum venulosum. Using Xenopus laevis oocytes expressing individual LAT family members, we demonstrated that ESK246 preferentially inhibits leucine transport via LAT3, while ESK242 inhibits both LAT1 and LAT3. We further show in LNCaP prostate cancer cells that ESK246 is a potent (IC50 = 8.12 µM) inhibitor of leucine uptake, leading to reduced mTORC1 signaling, cell cycle protein expression and cell proliferation. Our study suggests that ESK246 is a LAT3 inhibitor that can be used to study LAT3 function and upon which new antiprostate cancer therapies may be based.


Subject(s)
Amino Acid Transport Systems, Basic/antagonists & inhibitors , Cell Proliferation/drug effects , Glycosides/pharmacology , Large Neutral Amino Acid-Transporter 1/chemistry , Leucine/metabolism , Monoterpenes/chemistry , Prostatic Neoplasms/pathology , Rosales/chemistry , Amino Acid Transport Systems, Basic/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Transport , Blotting, Western , Female , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Monoterpenes/pharmacology , Multiprotein Complexes/metabolism , Oocytes/cytology , Oocytes/drug effects , Oocytes/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured , Xenopus laevis/growth & development , Xenopus laevis/metabolism
13.
FEBS J ; 281(9): 2254-65, 2014 May.
Article in English | MEDLINE | ID: mdl-24649829

ABSTRACT

GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαßγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base.


Subject(s)
Bacterial Proteins/metabolism , GTP-Binding Proteins/metabolism , Guanosine Diphosphate/metabolism , Alanine/genetics , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Fluorescence , Humans , Hydrolysis , Molecular Sequence Data , Sequence Homology, Amino Acid , Serine/genetics , Streptococcus thermophilus/metabolism
14.
Int J Cancer ; 135(5): 1060-71, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24531984

ABSTRACT

Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.


Subject(s)
Amino Acid Transport System ASC/biosynthesis , Glutamine/metabolism , Large Neutral Amino Acid-Transporter 1/biosynthesis , Melanoma/pathology , Multiprotein Complexes/antagonists & inhibitors , Skin Neoplasms/pathology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/genetics , Amino Acids, Cyclic/pharmacology , Benzyl Compounds/pharmacology , Biological Transport , CDC2 Protein Kinase/biosynthesis , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival , Humans , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1 , Melanoma/metabolism , Minor Histocompatibility Antigens , Multiprotein Complexes/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA Interference , RNA, Small Interfering/genetics , Serine/analogs & derivatives , Serine/pharmacology , Signal Transduction , Skin Neoplasms/metabolism , Spheroids, Cellular , TOR Serine-Threonine Kinases/genetics , Tumor Cells, Cultured , Ubiquitin-Conjugating Enzymes/biosynthesis
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23545645

ABSTRACT

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Subject(s)
GTP Phosphohydrolases/chemistry , Gallionellaceae/enzymology , Membrane Proteins/chemistry , Protein Multimerization , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
16.
FEBS Lett ; 586(16): 2218-24, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-22750478

ABSTRACT

G-proteins are some of the most important and abundant enzymes, yet their intrinsic nucleotide hydrolysis reaction is notoriously slow and must be accelerated in vivo. Recent experiments on dynamin and GTPases involved in ribosome assembly have demonstrated that their hydrolysis activities are stimulated by potassium ions. This article presents the hypothesis that cation-mediated activation of G-proteins is more common than currently realised, and that such GTPases represent a structurally and functionally unique class of G-proteins. Based on sequence analysis we provide a list of predicted cation-dependent GTPases, which encompasses almost all members of the TEES, Obg-HflX, YqeH-like and dynamin superfamilies. The results from this analysis effectively re-define the conditions under which many of these G-proteins should be studied in vitro.


Subject(s)
GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/metabolism , Amino Acid Sequence , Binding Sites , Cations , Dynamins/chemistry , Humans , Hydrolysis , Models, Biological , Molecular Conformation , Molecular Sequence Data , Potassium/chemistry , Protein Conformation , Ribosomes/chemistry , Sequence Homology, Amino Acid
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1511-5, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22139154

ABSTRACT

The uptake of ferrous iron in prokaryotes is mediated by the G-protein-coupled membrane protein FeoB. The protein contains two N-terminal soluble domains that are together called `NFeoB'. One of these is a G-protein domain, and GTP hydrolysis by this domain is essential for iron transport. The GTPase activity of NFeoB is accelerated in the presence of potassium ions, which bind at a site adjacent to the nucleotide. One of the ligands at the potassium-binding site is a conserved asparagine residue, which corresponds to Asn11 in Streptococcus thermophilus NFeoB. The structure of an N11A S. thermophilus NFeoB mutant has been determined and refined to a resolution of 1.85 Å; the crystals contained a mixture of mant-GDP-bound and mant-GMP-bound protein. The structure demonstrates how the use of a derivatized nucleotide in cocrystallization experiments can facilitate the growth of diffraction-quality crystals.


Subject(s)
Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Mutation , Streptococcus thermophilus/chemistry , Bacterial Proteins/genetics , Binding Sites , Cation Transport Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Protein Structure, Tertiary
18.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 11): 973-80, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22101824

ABSTRACT

The acquisition of ferrous iron in prokaryotes is achieved by the G-protein-coupled membrane protein FeoB. This protein possesses a large C-terminal membrane-spanning domain preceded by two soluble cytoplasmic domains that are together termed 'NFeoB'. The first of these soluble domains is a GTPase domain (G-domain), which is then followed by an entirely α-helical domain. GTP hydrolysis by the G-domain is essential for iron uptake by FeoB, and various NFeoB mutant proteins from Streptococcus thermophilus have been constructed. These mutations investigate the role of conserved amino acids from the protein's critical Switch regions. Five crystal structures of these mutant proteins have been determined. The structures of E66A and E67A mutant proteins were solved in complex with nonhydrolyzable GTP analogues, the structures of T35A and E67A mutant proteins were solved in complex with GDP and finally the structure of the T35S mutant was crystallized without bound nucleotide. As an ensemble, the structures illustrate how small nucleotide-dependent rearrangements at the active site are converted into large rigid-body reorientations of the helical domain in response to GTP binding and hydrolysis. This provides the first evidence of nucleotide-dependent helical domain movement in NFeoB proteins, suggesting a mechanism by which the G-protein domain could structurally communicate with the membrane domain and mediate iron uptake.


Subject(s)
Bacterial Proteins/metabolism , Guanosine Triphosphate/chemistry , Hydrolysis , Iron/metabolism , Streptococcus thermophilus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Conserved Sequence/genetics , Crystallization , GTP-Binding Proteins/genetics , Guanosine Triphosphate/metabolism , Mutagenesis, Site-Directed , Mutation/genetics , Protein Structure, Secondary , Protein Structure, Tertiary/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Streptococcus thermophilus/chemistry
19.
PLoS One ; 6(8): e23355, 2011.
Article in English | MEDLINE | ID: mdl-21858085

ABSTRACT

The polytopic membrane protein FeoB is a ferrous iron transporter in prokaryotes. The protein contains a potassium-activated GTPase domain that is essential in regulating the import of iron and conferring virulence to many disease-causing bacteria. However, the mechanism by which the G-domain of FeoB hydrolyzes GTP is not well understood. In particular, it is not yet known how the pivotal step in GTP hydrolysis is achieved: alignment of a catalytic water molecule. In the current study, the crystal structure of the soluble domains from Streptococcus thermophilus FeoB (NFeoB(St)) in complex with the activating potassium ion and a transition-state analogue, GDP⋅AlF(4) (-), reveals a novel mode of water alignment involving contacts with the protein backbone only. In parallel to the structural studies, a series of seven mutant proteins were constructed that targeted conserved residues at the active site of NFeoB(St), and the nucleotide binding and hydrolysis properties of these were measured and compared to the wild-type protein. The results show that mutations in Thr35 abolish GTPase activity of the protein, while other conserved residues (Tyr58, Ser64, Glu66 and Glu67) are not required for water alignment by NFeoB(St). Together with the crystal structure, the findings suggest a new mechanism for hydrolysis initiation in small G-proteins, in which the attacking water molecule is aligned by contacts with the protein backbone only.


Subject(s)
Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Guanosine Triphosphate/chemistry , Protein Conformation , Protein Structure, Tertiary , Aluminum Compounds/chemistry , Aluminum Compounds/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Crystallography, X-Ray , Fluorides/chemistry , Fluorides/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Hydrolysis , Models, Molecular , Molecular Sequence Data , Mutation , Potassium/chemistry , Potassium/metabolism , Protein Binding , Sequence Homology, Amino Acid , Streptococcus thermophilus/enzymology , Streptococcus thermophilus/genetics , Substrate Specificity , Threonine/chemistry , Threonine/genetics , Threonine/metabolism , Water/chemistry , Water/metabolism
20.
J Biol Chem ; 285(19): 14594-602, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20220129

ABSTRACT

FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.


Subject(s)
Cation Transport Proteins/metabolism , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/metabolism , Iron/metabolism , Potassium/pharmacology , Streptococcus thermophilus/metabolism , Cation Transport Proteins/chemistry , Crystallography, X-Ray , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...