Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Article in English | MEDLINE | ID: mdl-38954571

ABSTRACT

Proteins can be regarded as thermal nanosensors in an intra-body network. Upon being stimulated by Terahertz (THz) frequencies that match their vibrational modes, protein molecules experience resonant absorption and dissipate their energy as heat, undergoing a thermal process. This paper aims to analyze the effect of THz signaling on the protein heat dissipation mechanism. We therefore deploy a mathematical framework based on the heat diffusion model to characterize how proteins absorb THz-electromagnetic (EM) energy from the stimulating EM fields and subsequently release this energy as heat to their immediate surroundings. We also conduct a parametric study to explain the impact of the signal power, pulse duration, and inter-particle distance on the protein thermal analysis. In addition, we demonstrate the relationship between the change in temperature and the opening probability of thermally-gated ion channels. Our results indicate that a controlled temperature change can be achieved in an intra-body environment by exciting protein particles at their resonant frequencies. We further verify our results numerically using COMSOL Multiphysics® and introduce an experimental framework that assesses the effects of THz radiation on protein particles. We conclude that under controlled heating, protein molecules can serve as hotspots that impact thermally-gated ion channels. Through the presented work, we infer that the heating process can be engineered on different time and length scales by controlling the THz-EM signal input.

2.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891836

ABSTRACT

As human progenitor cells differentiate into neurons, the activities of many genes change; these changes are maintained within a narrow range, referred to as genome homeostasis. This process, which alters the synchronization of the entire expressed genome, is distorted in neurodevelopmental diseases such as schizophrenia. The coordinated gene activity networks formed by altering sets of genes comprise recurring coordination modules, governed by the entropy-controlling action of nuclear FGFR1, known to be associated with DNA topology. These modules can be modeled as energy-transferring circuits, revealing that genome homeostasis is maintained by reducing oscillations (noise) in gene activity while allowing gene activity changes to be transmitted across networks; this occurs more readily in neuronal committed cells than in neural progenitors. These findings advance a model of an "entangled" global genome acting as a flexible, coordinated homeostatic system that responds to developmental signals, is governed by nuclear FGFR1, and is reprogrammed in disease.


Subject(s)
Gene Regulatory Networks , Homeostasis , Neurons , Animals , Humans , Cell Differentiation/genetics , Genome , Homeostasis/genetics , Neurogenesis/genetics , Neurons/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism
3.
Phys Rev Lett ; 132(11): 116701, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563939

ABSTRACT

Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics.

4.
Nanomaterials (Basel) ; 13(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38133011

ABSTRACT

Graphene-based Field-Effect Transistors (FETs) integrated with microstrip patch antennas offer a promising approach for terahertz signal radiation. In this study, a dual-stage simulation methodology is employed to comprehensively investigate the device's performance. The initial stage, executed in MATLAB, delves into charge transport dynamics within a FET under asymmetric boundary conditions, employing hydrodynamic equations for electron transport in the graphene channel. Electromagnetic field interactions are modeled via Finite-Difference Time-Domain (FDTD) techniques. The second stage, conducted in COMSOL Multiphysics, focuses on the microstrip patch antenna's radiative characteristics. Notably, analysis of the S11 curve reveals minimal reflections at the FET's resonant frequency of 1.34672 THz, indicating efficient impedance matching. Examination of the radiation pattern demonstrates the antenna's favorable directional properties. This research underscores the potential of graphene-based FETs for terahertz applications, offering tunable impedance matching and high radiation efficiency for future terahertz devices.

5.
Sci Rep ; 13(1): 14643, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669995

ABSTRACT

The field of wireless communication has witnessed tremendous advancements in the past few decades, leading to more pervasive and ubiquitous networks. Human bodies are continually exposed to electromagnetic radiation, but typically this does not impact the body as the radiation is non-ionizing and the waves carry low power. However, with progress in the sixth generation (6G) of wireless networks and the adoption of the spectrum above 100 GHz in the next few years, higher power radiation is needed to cover larger areas, exposing humans to stronger and more prolonged radiation. Also, water has a high absorption coefficient at these frequencies and could lead to thermal effects on the skin. Hence, there is a need to study the radiation effects on human tissues, specifically the photothermal effects. In this paper, we present a custom-built, multi-physics model to investigate electromagnetic wave propagation in human tissue and study its subsequent photothermal effects. The proposed finite-element model consists of two segments-the first one estimates the intensity distribution along the beam path, while the second calculates the increase in temperature due to the wave distribution inside the tissue. We determine the intensity variation in the tissue using the radiative transfer equation and compare the results with Monte Carlo analysis and existing analytical models. The intensity information is then utilized to predict the rise in temperature with a bio-heat transfer module, powered by Pennes' bioheat equation. The model is parametric, and we perform a systematic photothermal analysis to recognize the crucial variables responsible for the temperature growth inside the tissue, particularly for terahertz and near-infrared optical frequencies. Our numerical model can serve as a benchmark for studying the high-frequency radiation effects on complex heterogeneous media such as human tissue.


Subject(s)
Benchmarking , Communication , Humans , Animals , Culture , Estrus , Hot Temperature
6.
Nat Commun ; 14(1): 841, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36792611

ABSTRACT

The field of sub-terahertz wireless communications is advancing rapidly, with major research efforts ramping up around the globe. To address some of the significant hurdles associated with exploiting these high frequencies for broadband and secure networking, systems will require extensive new capabilities for sensing their environment and manipulating their broadcasts. Based on these requirements, a vision for future wireless systems is beginning to emerge. In this Perspective article, we discuss some of the prominent challenges and possible solutions which are at the forefront of current research, and which will contribute to the architecture of wireless platforms beyond 5G.

7.
Sci Rep ; 12(1): 10971, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768465

ABSTRACT

One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver's angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.

8.
Nano Lett ; 22(7): 2674-2681, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35312324

ABSTRACT

Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic treatment shows how the transistor asymmetry supports plasma-wave amplification, giving rise to pronounced negative differential conductance (NDC). A demonstration of these behaviors is provided in InGaAs high-mobility transistors, which exhibit NDC in accordance with their designed asymmetry. The NDC onsets once the drift velocity in the channel reaches a threshold value, triggering the initial plasma instability. We also show how this feature can be made to persist beyond room temperature (to at least 75 °C), when the gating is configured to facilitate a transition between the hydrodynamic and ballistic regimes (of electron-electron transport). Our findings represent a significant step forward for efforts to develop active components for THz electronics.


Subject(s)
Transistors, Electronic
9.
Engineering (Beijing) ; 17: 75-81, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38149108

ABSTRACT

Subwavelength manipulation of light waves with high precision can enable new and exciting applications in spectroscopy, sensing, and medical imaging. For these applications, miniaturized spectrometers are desirable to enable the on-chip analysis of spectral information. In particular, for imaging-based spectroscopic sensing mechanisms, the key challenge is to determine the spatial-shift information accurately (i.e., the spatial displacement introduced by wavelength shift or biological or chemical surface binding), which is similar to the challenge presented by super-resolution imaging. Here, we report a unique "rainbow" trapping metasurface for on-chip spectrometers and sensors. Combined with super-resolution image processing, the low-setting 4× optical microscope system resolves a displacement of the resonant position within 35 nm on the plasmonic rainbow trapping metasurface with a tiny area as small as 0.002 mm2. This unique feature of the spatial manipulation of efficiently coupled rainbow plasmonic resonances reveals a new platform for miniaturized on-chip spectroscopic analysis with a spectral resolution of 0.032 nm in wavelength shift. Using this low-setting 4× microscope imaging system, we demonstrate a biosensing resolution of 1.92 × 109 exosomes per milliliter for A549-derived exosomes and distinguish between patient samples and healthy controls using exosomal epidermal growth factor receptor (EGFR) expression values, thereby demonstrating a new on-chip sensing system for personalized accurate bio/chemical sensing applications.

10.
Light Sci Appl ; 9: 179, 2020.
Article in English | MEDLINE | ID: mdl-33101659

ABSTRACT

On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information-processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.

11.
Opt Lett ; 45(20): 5744-5747, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057274

ABSTRACT

Epsilon-near-zero (ENZ) materials display unique properties, and among them, large local field enhancement at ENZ frequency is of particular interest for many potential applications. In this Letter, we introduce the concept that a combination of epsilon-near-zero and surface plasmon polariton modes can be excited over an interface between a dielectric and a single ENZ layer in a specific frequency region, which can lead to extreme enhancement of local electric field. We demonstrate it with a systematic numerical simulation using finite element analysis and consider two configurations (Kretschmann configuration and a grating configuration), where an indium tin oxide (ITO) layer is sandwiched between two dielectric slabs. We confirm the formation of a hybrid mode at the ITO-dielectric interface at the wavelength of ENZ, as the ITO layer thickness reduces. The hybrid mode provides both high confinement and long propagation distance, which makes it more attractive for many applications than just a pure ENZ mode.

12.
Science ; 368(6492): 760-763, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32409473

ABSTRACT

The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non-Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.

13.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396256

ABSTRACT

During the development of mouse embryonic stem cells (ESC) to neuronal committed cells (NCC), coordinated changes in the expression of 2851 genes take place, mediated by the nuclear form of FGFR1. In this paper, widespread differences are demonstrated in the ESC and NCC inter- and intra-chromosomal interactions, chromatin looping, the formation of CTCF- and nFGFR1-linked Topologically Associating Domains (TADs) on a genome-wide scale and in exemplary HoxA-D loci. The analysis centered on HoxA cluster shows that blocking FGFR1 disrupts the loop formation. FGFR1 binding and genome locales are predictive of the genome interactions; likewise, chromatin interactions along with nFGFR1 binding are predictive of the genome function and correlate with genome regulatory attributes and gene expression. This study advances a topologically integrated genome archipelago model that undergoes structural transformations through the formation of nFGFR1-associated TADs. The makeover of the TAD islands serves to recruit distinct ontogenic programs during the development of the ESC to NCC.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Nucleus/genetics , Chromatin/metabolism , Embryonic Stem Cells/cytology , Genome , Neurogenesis , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Animals , CCCTC-Binding Factor/genetics , Cell Differentiation , Chromatin/genetics , Chromosomes/genetics , Embryonic Stem Cells/metabolism , Mice , Molecular Conformation , Receptor, Fibroblast Growth Factor, Type 1/genetics
14.
Article in English | MEDLINE | ID: mdl-30983848

ABSTRACT

We report a plasmonic interferometer array (PIA) sensor and demonstrate its ability to detect circulating exosomal proteins in real-time with high sensitivity and low cost to enable the early detection of cancer. Specifically, a surface plasmon wave launched by the nano-groove rings interferes with the free-space light at the output of central nano-aperture and results in an intensity interference pattern. Under the single-wavelength illumination, when the target exosomal proteins are captured by antibodies bound on the surface, the biomediated change in the refractive index between the central aperture and groove rings causes the intensity change in transmitted light. By recording the intensity changes in real-time, one can effectively screen biomolecular binding events and analyze the binding kinetics. By integrating signals from multiple sensor pairs to enhance the signal-to-noise ratio, superior sensing resolutions of 1.63×10-6 refractive index unit (RIU) in refractive index change and 3.86×108 exosomes/mL in exosome detection were realized, respectively. Importantly, this PIA sensor can be imaged by a miniaturized microscope system coupled with a smart phone to realize a portable and highly sensitive healthcare device. The sensing resolution of 9.72×109 exosomes/mL in exosome detection was realized using the portable sensing system building upon a commercial smartphone.

15.
Curr Drug Targets ; 20(8): 800-807, 2019.
Article in English | MEDLINE | ID: mdl-30648507

ABSTRACT

By interconnecting nanomachines and forming nanonetworks, the capacities of single nanomachines are expected to be enhanced, as the ensuing information exchange will allow them to cooperate towards a common goal. Nowadays, systems normally use electromagnetic signals to encode, send and receive information, however, in a novel communication paradigm, molecular transceivers, channel models or protocols use molecules. This article presents the current developments in nanomachines along with their future architecture to better understand nanonetwork scenarios in biomedical applications. Furthermore, to highlight the communication needs between nanomachines, two applications for nanonetworks are also presented: i) a new networking paradigm, called the Internet of NanoThings, that allows nanoscale devices to interconnect with existing communication networks, and ii) Molecular Communication, where the propagation of chemical compounds like drug particles, carry out the information exchange.


Subject(s)
Biotechnology/instrumentation , Nanotechnology/instrumentation , Computer Communication Networks , Computer Simulation , Drug Delivery Systems , Electromagnetic Phenomena , Humans , Models, Molecular
16.
IEEE Trans Neural Syst Rehabil Eng ; 27(2): 108-117, 2019 02.
Article in English | MEDLINE | ID: mdl-30624220

ABSTRACT

Miniaturization of implantable devices is an important challenge for future brain-computer interface applications, and in particular for achieving precise neuron stimulation. For stimulation that utilizes light, i.e., optogenetics, the light propagation behavior and interaction at the nanoscale with elements within the neuron is an important factor that needs to be considered when designing the device. This paper analyzes the effect of light behavior for a single neuron stimulation and focuses on the impact from different cell shapes. Based on the Mie scattering theory, the paper analyzes how the shape of the soma and the nucleus contributes to the focusing effect resulting in an intensity increase, which ensures that neurons can assist in transferring light through the tissue toward the target cells. At the same time, this intensity increase can in turn also stimulate neighboring cells leading to interference within the neural circuits. This paper also analyzes the ideal placements of the device with respect to the angle and position within the cortex that can enable axonal biophoton communications, which can contain light within the cell to avoid the interference.


Subject(s)
Brain-Computer Interfaces , Nanotechnology , Neurons/physiology , Neurons/radiation effects , Optogenetics/methods , Photic Stimulation , Algorithms , Axons/radiation effects , Cell Shape/radiation effects , Cerebral Cortex/cytology , Cerebral Cortex/radiation effects , Humans , Light , Neural Stem Cells/radiation effects , Neural Stem Cells/ultrastructure , Neurons/ultrastructure , Scattering, Radiation
17.
Rev. Rol enferm ; 41(11/12): 757-760, nov.-dic. 2018. ilus
Article in Spanish | IBECS | ID: ibc-179767

ABSTRACT

Las quemaduras son heridas que presentan un aspecto muy diverso. Además, pueden comportar niveles de gravedad muy distintos, tratándose de heridas leves que evolucionan favorablemente en algunos casos (quemaduras «menores»), o causando graves lesiones cutáneas y trastornos sistémicos en otros (quemaduras graves o grandes quemados). Las quemaduras graves deberán ser derivadas de inmediato a unidades de quemados, mientras que las quemaduras «menores», se pueden manejar en atención primaria. No obstante, pueden presentarse algunas complicaciones, que deben prevenirse o detectarse precozmente para evitar secuelas mayores. A propósito de este caso, se mencionan algunos aspectos importantes sobre el manejo de estas lesiones en atención primaria, citando algunos errores que suelen cometerse frecuentemente y la forma de evitarlos. Destacaremos los beneficios que aportan algunos materiales modernos, que contribuyen al cierre más rápido de la herida, con lo que se obtiene un mejor resultado estético y funcional de la cicatriz resultante


Burns are wounds that have a very different appearance. In addition, they can behave very different levels of severity, in the case of minor wounds that progress favorably in some cases («minor» burns), or causing severe skin lesions and systemic disorders in others (severe burns or large burns). Serious burns should be immediately referred to burn units, while «minor» burns can be handled in primary care. However, some complications can occur, which must be prevented or detected early to avoid major sequelae. Regarding this case, some important aspects of the management of these injuries in primary care are mentioned, citing some errors that are frequently committed and how to avoid them. We will highlight the benefits provided by some modern materials, which contribute to the faster closure of the wound, which results in a better aesthetic and functional outcome of the resulting scar


Subject(s)
Humans , Adolescent , Burns/therapy , Sulfadiazine/pharmacokinetics , Bandages , Wound Closure Techniques/nursing , Wound Healing , Debridement/nursing , Treatment Outcome , Primary Health Care/methods
18.
Nature ; 563(7729): 89-93, 2018 11.
Article in English | MEDLINE | ID: mdl-30323288

ABSTRACT

Resiliency against eavesdropping and other security threats has become one of the key design considerations for communication systems. As wireless systems become ubiquitous, there is an increasing need for security protocols at all levels, including software (such as encryption), hardware (such as trusted platform modules) and the physical layer (such as wave-front engineering)1-5. With the inevitable shift to higher carrier frequencies, especially in the terahertz range (above 100 gigahertz), an important consideration is the decreased angular divergence (that is, the increased directionality) of transmitted signals, owing to the reduced effects of diffraction on waves with shorter wavelengths. In recent years, research on wireless devices6-8 and systems9-11 that operate at terahertz frequencies has ramped up markedly. These high-frequency, narrow-angle broadcasts present a more challenging environment for eavesdroppers compared to the wide-area broadcasts used at lower frequencies12,13. However, despite the widespread assumption of improved security for high-frequency wireless data links14-16, the possibility of terahertz eavesdropping has not yet been characterized. A few recent studies have considered the issue at lower frequencies5,12,13,17,18, but generally with the idea that the eavesdropper's antenna must be located within the broadcast sector of the transmitting antenna, leading to the conclusion that eavesdropping becomes essentially impossible when the transmitted signal has sufficiently high directionality15. Here we demonstrate that, contrary to this expectation, an eavesdropper can intercept signals in line-of-sight transmissions, even when they are transmitted at high frequencies with narrow beams. The eavesdropper's techniques are different from those for lower-frequency transmissions, as they involve placing an object in the path of the transmission to scatter radiation towards the eavesdropper. We also discuss one counter-measure for this eavesdropping technique, which involves characterizing the backscatter of the channel. We show that this counter-measure can be used to detect some, although not all, eavesdroppers. Our work highlights the importance of physical-layer security in terahertz wireless networks and the need for transceiver designs that incorporate new counter-measures.

19.
IEEE Trans Nanobioscience ; 17(4): 464-473, 2018 10.
Article in English | MEDLINE | ID: mdl-30188837

ABSTRACT

In vivo wireless nanosensor networks (iWNSNs) are paving the way toward transformative healthcare solutions. These networks are expected to enable a plethora of applications, including drug-delivery, bio-sensing, and health monitoring. With the development of miniature plasmonic signal sources, antennas, and detectors, wireless communications among intrabody nanodevices will expectedly be enabled in the terahertz (THz) frequency band (0.1-10 THz). Several propagation models were recently developed to analyze and assess the feasibility of intra-body electromagnetic (EM) nanoscale communication. The emphasis of these works has mainly been on understanding the propagation of EM signals through biological media, with limited focus on the intra-body noise sources and their impact on the system performance. In this paper, a stochastic noise model for iWNSNs is presented in which the individual noise sources that impact intra-body systems operating in the THz frequency band are analyzed. The overall noise contributions are composed of three distinctive constituents, namely, Johnson-Nyquist noise, black-body noise, and Doppler-shift-induced noise. The probability distribution of each noise component is derived, and a comprehensive analytical approach is developed to obtain the total noise power-spectral density. The model is further validated via 2-D particle simulations as the active transport motion of particles is conveyed in the presented framework. The developed models serve as the starting point for a rigorous end-to-end channel model that enables the proper estimation of data rate, channel capacity, and other key parameters, which are all factors of the noise environment.


Subject(s)
Nanotechnology/instrumentation , Terahertz Radiation , Wireless Technology/instrumentation , Biosensing Techniques , Computer Simulation , Equipment Design , Humans , Signal Processing, Computer-Assisted , Telemetry
20.
ACS Sens ; 3(8): 1471-1479, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30019892

ABSTRACT

Exosomes are small extracellular vesicles released by cells for cell-cell communication. They play important roles in cancer development, metastasis, and drug resistance. Exosomal proteins have been demonstrated by many studies as promising biomarkers for cancer screening, diagnosis, and monitoring. Among many detection techniques, surface plasmon resonance (SPR) is a highly sensitive, label-free, and real-time optical detection method. Commercial prism-based wavelength/angular-modulated SPR sensors afford high sensitivity and resolution, but their large footprint and high cost limit their adaptability for clinical settings. Recently, a nanoplasmonic exosome (nPLEX) assay was developed to detect exosomal proteins for ovarian cancer diagnosis. However, comparing with conventional SPR biosensors, the broad applications of nanoplasmonic biosensors are limited by the difficult and expensive fabrication of nanostructures. We have developed an intensity-modulated, compact SPR biosensor (25 cm × 10 cm × 25 cm) which uses a conventional SPR sensing mechanism and does not require nanostructure fabrication. Calibration from glycerol showed that the compact SPR biosensor offered sensitivity of 9.258 × 103%/RIU and resolution of 8.311 × 10-6 RIU. We have demonstrated the feasibility of the compact SPR biosensor in lung cancer diagnosis using exosomal epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) as biomarkers. It detected a higher level of exosomal EGFR from A549 nonsmall cell lung cancer (NSCLC) cells than BEAS-2B normal cells. With human serum samples, the compact SPR biosensor detected similar levels of exosomal EGFR in NSCLC patients and normal controls, and higher expression of exosomal PD-L1 in NSCLC patients than normal controls. The compact SPR biosensor showed higher detection sensitivity than ELISA and similar sensing accuracy as ELISA. It is a simple and user-friendly sensing platform, which may serve as an in vitro diagnostic test for cancer.


Subject(s)
Biosensing Techniques/methods , Carcinoma, Non-Small-Cell Lung/diagnosis , ErbB Receptors/analysis , Exosomes/metabolism , Lung Neoplasms/diagnosis , Surface Plasmon Resonance , Aged , B7-H1 Antigen/analysis , Biomarkers, Tumor/analysis , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Protein Array Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...