Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 106(22): 7615-7625, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36260099

ABSTRACT

Immobilized cell technologies (ICT) have been used in wort fermentation, beer maturation, or production of alcohol-free or low-alcohol beer. The purpose of ICT is to restrict intact cells to a specific location while allowing biological function. It improves cell stability, operational flexibility, and control in brewing, as well as ease in executing continuous operations. We investigated the use of yeast biocapsules for Indian Pale Ale (IPA) type beer wort fermentation, a novel ICT in brewing. Yeast biocapsules are a spherical yeast immobilization system in which yeast cells are encapsulated and connected to the hyphae of an inactivated hollow filamentous fungus pellet. Fermentations with yeast encapsulated in alginate beads, as the standard immobilization practice, and in free (non-immobilized) forms were carried out in parallel. We found that yeast biocapsules are a better option for cell reutilization than alginate beads, but worse for beer must clarity. Beer brewed with yeast biocapsules differed in concentration for five volatile compounds (acetaldehyde, diacetyl, ethyl acetate, 1,1-diethoxyethane, and isoamyl alcohol) and three sensory characters (persistency of the foam, malt, and yeast character). KEY POINTS: • Yeast biocapsules were investigated for beer wort fermentation • Biocapsules improve cell reutilization but are limited for beer clarification • Beer brewed with biocapsules is chemically different than conventional beer • Most sensory features did not differ between biocapsule and control beer.


Subject(s)
Beer , Saccharomyces cerevisiae , Beer/microbiology , Saccharomyces cerevisiae/metabolism , Cells, Immobilized , Fermentation , Technology , Alginates/metabolism
2.
J Proteomics ; 243: 104263, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34000457

ABSTRACT

Quercus ilex is the dominant tree species in natural forest ecosystems across the Mediterranean Basin and in the agrosilvopastoral system dehesa, which has a high ecological and economical significance. As in other forestry species, survival in Q. ilex is threatened by long periods of drought. This paper reports the transcriptome and proteome profiles of 6-month-old seedlings subjected to severe drought conditions. Drought was imposed by water withholding in seedlings grown in perlite for 28 days. Seedling leaves were collected when leaf fluorescence had decreased by 20% and 45% relative to well-watered seedlings. The transcriptome and proteome were analyzed by using Illumina and shotgun platforms. The quality and confidence of the mRNA and protein identifications and quantifications were assessed, obtaining 25,169 transcripts and 3312 proteins. Variable transcripts and proteins were analyzed by Venn diagram, Pearson's correlation, GO enrichment, KEGG pathways, multivariate analysis and interaction networks. Despite the poor correlation between mRNA and protein, both platforms gave a complementary view of the changes in the abundance of several gene products under drought conditions and indicated that gene expression regulation and translation to phenotype is quite complex and gene-specific. As a general tendency, while transcripts and proteins of the metabolism were down-accumulated, those of stress related were up-accumulated. Out of the variable dataset, four gene products (viz., FtSH6, CLPB1, CLPB3, and HSP22) were up-accumulated at both omics levels at the two surveyed times, being the first work where they are described in drought response in forest species. These chaperones and proteases could be considered as potential drought tolerance markers to be used in the selection of elite, resilient genotypes, and in breeding programs.


Subject(s)
Quercus , Droughts , Ecosystem , Plant Breeding , Plant Leaves , Quercus/genetics , Seedlings/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...