Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Interface Focus ; 12(6): 20220028, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36330325

ABSTRACT

Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.

2.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954266

ABSTRACT

Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Epithelium/metabolism , Humans , Leukocytes, Mononuclear/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/pathology
4.
Am J Respir Cell Mol Biol ; 61(4): 501-511, 2019 10.
Article in English | MEDLINE | ID: mdl-30943377

ABSTRACT

The airway epithelium represents a fragile environmental interface potentially disturbed by cigarette smoke (CS), the major risk factor for developing chronic obstructive pulmonary disease (COPD). CS leads to bronchial epithelial damage on ciliated, goblet, and club cells, which could involve calcium (Ca2+) signaling. Ca2+ is a key messenger involved in virtually all fundamental physiological functions, including mucus and cytokine secretion, cilia beating, and epithelial repair. In this study, we analyzed Ca2+ signaling in air-liquid interface-reconstituted bronchial epithelium from control subjects and smokers (with and without COPD). We further aimed to determine how smoking impaired Ca2+ signaling. First, we showed that the endoplasmic reticulum (ER) depletion of Ca2+ stores was decreased in patients with COPD and that the Ca2+ influx was decreased in epithelial cells from smokers (regardless of COPD status). In addition, acute CS exposure led to a decrease in ER Ca2+ release, significant in smoker subjects, and to a decrease in Ca2+ influx only in control subjects. Furthermore, the differential expression of 55 genes involved in Ca2+ signaling highlighted that only ORAI3 expression was significantly altered in smokers (regardless of COPD status). Finally, we incubated epithelial cells with an ORAI antagonist (GSK-7975A). GSK-7975A altered Ca2+ influx and ciliary beating, but not mucus and cytokine secretion or epithelial repair, in control subjects. Our data suggest that Ca2+ signaling is impaired in smoker epithelia (regardless of COPD status) and involves ORAI3. Moreover, ORAI3 is additionally involved in ciliary beating.


Subject(s)
Bronchi/cytology , Calcium Channels/physiology , Calcium/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Mucosa/metabolism , Smoking/metabolism , Adult , Aged , Benzamides/pharmacology , Bronchi/metabolism , Calcium Channels/biosynthesis , Calcium Channels/genetics , Calcium Signaling , Cells, Cultured , Cilia/drug effects , Cilia/physiology , Cytokines/metabolism , Endoplasmic Reticulum/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Gene Expression Regulation , Humans , Interleukin-8/biosynthesis , Male , Middle Aged , Mucin 5AC/biosynthesis , Mucus/metabolism , Pyrazoles/pharmacology , Respiratory Mucosa/pathology , Signal Transduction/physiology , Smoke , Smokers
SELECTION OF CITATIONS
SEARCH DETAIL
...