Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Exp Dermatol ; 33(5): e15084, 2024 May.
Article in English | MEDLINE | ID: mdl-38711223

ABSTRACT

The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.


Subject(s)
Cell Differentiation , Claudin-1 , Epidermis , Filaggrin Proteins , Keratinocytes , Keratinocytes/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Humans , Filaggrin Proteins/metabolism , Epidermis/metabolism , Epidermis/pathology , Skin Diseases/genetics , Skin Diseases/metabolism , Tight Junctions/metabolism , Keratin-10/metabolism , Keratin-10/genetics , Gene Knockout Techniques , Cell Proliferation , CRISPR-Cas Systems
2.
J Invest Dermatol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642800

ABSTRACT

Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.

3.
Muscle Nerve ; 69(5): 588-596, 2024 May.
Article in English | MEDLINE | ID: mdl-38459960

ABSTRACT

INTRODUCTION/AIMS: Nerve conduction studies (NCSs) are widely used to support the clinical diagnosis of neuromuscular disorders. The aims of this study were to obtain reference values for peroneal, tibial, and sural NCSs and to examine the associations with demographic and anthropometric factors. METHODS: In 5099 participants (aged 40-79 years) without type 2 diabetes of The Maastricht Study, NCSs of peroneal, tibial, and sural nerves were performed. Values for compound muscle action potential (CMAP) and sensory nerve action potential amplitude, nerve conduction velocity (NCV), and distal latency were acquired. The association of age, sex, body mass index (BMI), and height with NCS values was determined using uni- and multivariate linear regression analyses. RESULTS: Detailed reference values are reported per decade for men and women. Significantly lower NCVs and longer distal latencies were observed in all nerves in older and taller individuals as well as in men. In these groups, amplitudes of the tibial and sural nerves were significantly lower, whereas a lower peroneal nerve CMAP was only significantly associated with age. BMI showed a multidirectional association. After correction for anthropometric factors in the multivariate analysis, the association between sex and NCS values was less straightforward. DISCUSSION: These values from a population-based dataset could be used as a reference for generating normative values. Our findings show the association of NCS values with anthropometric factors. In clinical practice, these factors can be considered when interpreting NCS values.


Subject(s)
Diabetes Mellitus, Type 2 , Sural Nerve , Male , Humans , Female , Aged , Tibial Nerve/physiology , Nerve Conduction Studies , Neural Conduction/physiology , Reference Values , Peroneal Nerve/physiology , Demography
4.
J Invest Dermatol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38401701

ABSTRACT

The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as an indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multiomics analyses using human skin keratinocytes revealed that upon ligand activation, AHR binds open chromatin to induce expression of transcription factors, for example, TFAP2A, as a swift response to environmental stimuli. The terminal differentiation program, including upregulation of barrier genes, FLG and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.

5.
Microbiome ; 11(1): 227, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37849006

ABSTRACT

BACKGROUND: Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS: An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS: Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.


Subject(s)
Host Microbial Interactions , Microbiota , Animals , Humans , Skin/microbiology , Epidermis , Models, Animal
6.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333234

ABSTRACT

The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.

7.
J Invest Dermatol ; 143(8): 1520-1528.e5, 2023 08.
Article in English | MEDLINE | ID: mdl-36893939

ABSTRACT

Ever since the association between FLG loss-of-function variants and ichthyosis vulgaris and atopic dermatitis disease onset was identified, FLGs function has been under investigation. Intraindividual genomic predisposition, immunological confounders, and environmental interactions complicate the comparison between FLG genotypes and related causal effects. Using CRISPR/Cas9, we generated human FLG-knockout (ΔFLG) N/TERT-2G keratinocytes. FLG deficiency was shown by immunohistochemistry of human epidermal equivalent cultures. Next to (partial) loss of structural proteins (involucrin, hornerin, keratin 2, and transglutaminase 1), the stratum corneum was denser and lacked the typical basket weave appearance. In addition, electrical impedance spectroscopy and transepidermal water loss analyses highlighted a compromised epidermal barrier in ΔFLG human epidermal equivalents. Correction of FLG reinstated the presence of keratohyalin granules in the stratum granulosum, FLG protein expression, and expression of the proteins mentioned earlier. The beneficial effects on stratum corneum formation were reflected by the normalization of electrical impedance spectroscopy and transepidermal water loss. This study shows the causal phenotypical and functional consequences of FLG deficiency, indicating that FLG is not only central in epidermal barrier function but also vital for epidermal differentiation by orchestrating the expression of other important epidermal proteins. These observations pave the way to fundamental investigations into the exact role of FLG in skin biology and disease.


Subject(s)
CRISPR-Cas Systems , Intermediate Filament Proteins , Humans , Intermediate Filament Proteins/metabolism , Filaggrin Proteins , Keratinocytes/metabolism , Phenotype
8.
J Allergy Clin Immunol Pract ; 11(5): 1335-1346, 2023 05.
Article in English | MEDLINE | ID: mdl-36805053

ABSTRACT

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.


Subject(s)
Dermatitis, Atopic , Humans , Skin , Cytokines/metabolism , Inflammation/metabolism , Thymic Stromal Lymphopoietin
10.
Biochem Pharmacol ; 208: 115400, 2023 02.
Article in English | MEDLINE | ID: mdl-36574884

ABSTRACT

Therapeutic aryl hydrocarbon receptor (AHR) modulating agents gained attention in dermatology as non-steroidal anti-inflammatory drugs that improve skin barrier properties. By exploiting AHR's known ligand promiscuity, we generated novel AHR modulating agents by lead optimization of a selective AHR modulator (SAhRM; SGA360). Twenty-two newly synthesized compounds were screened yielding two novel derivatives, SGA360f and SGA388, in which agonist activity led to enhanced keratinocyte terminal differentiation. SGA388 showed the highest agonist activity with potent normalization of keratinocyte hyperproliferation, restored expression of skin barrier proteins and dampening of chemokine expression by keratinocytes upon Th2-mediated inflammation in vitro. The topical application of SGA360f and SGA388 reduced acute skin inflammation in vivo by reducing cyclooxygenase levels, resulting in less neutrophilic dermal infiltrates. The minimal induction of cytochrome P450 enzyme activity, lack of cellular toxicity and mutagenicity classifies SGA360f and SGA388 as novel potential therapeutic AHR ligands and illustrates the potential of medicinal chemistry to fine-tune AHR signaling for the development of targeted therapies in dermatology and beyond.


Subject(s)
Receptors, Aryl Hydrocarbon , Skin Diseases , Humans , Receptors, Aryl Hydrocarbon/metabolism , Ligands , Skin/metabolism , Keratinocytes/metabolism , Inflammation/metabolism , Skin Diseases/drug therapy
11.
J Hypertens ; 41(2): 254-261, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36385097

ABSTRACT

OBJECTIVE: Low baroreflex sensitivity (BRS) has been hypothesized to underlie high blood pressure (BP) and greater BP variability on the longer term, but evidence is scarce. In addition, these associations may differ by sex and (pre)diabetes. Therefore, we investigated whether cardiovagal BRS is associated with short- to mid-term mean BP and BP variability, and differs according to sex and (pre)diabetes. METHODS: Cross-sectional data from the population-based Maastricht study (age 60 ±â€Š8 years, 52% men), where office ( n  = 2846), 24-h ( n  = 2404) and 7-day BP measurements ( n  = 2006) were performed. Spontaneous BRS was assessed by cross-correlating systolic BP and instantaneous heart rate. We used linear regression with adjustments for age, sex, BP or BP variability, and cardiovascular risk factors. RESULTS: With regard to BP, 1-SD (standard deviation) lower BRS (-5.75 ms/mmHg) was associated with higher office, 24-h and 7-day systolic BP (2.22 mmHg [95% confidence interval [CI]: 1.59; 2.80], 0.95 mmHg [0.54; 1.36], and 1.48 mmHg [0.99; 1.97], respectively) and diastolic BP (1.31 mmHg [0.97; 1.66], 0.57 mmHg [0.30; 0.84], and 0.86 mmHg [0.54; 1.17], respectively). Per 1-SD lower BRS, these associations were stronger in women (0.5-1.5 mmHg higher compared to men), and weaker in those with type 2 diabetes (1-1.5 mmHg lower compared to normal glucose metabolism). With regard to BP variability, BRS was not consistently associated with lower BP variability. CONCLUSIONS: Lower cardiovagal BRS is associated with higher mean BP from the short- to mid-term range, and not consistently with BP variability. The associations with mean BP are stronger in women and weaker in those with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Prediabetic State , Male , Humans , Female , Middle Aged , Aged , Blood Pressure/physiology , Baroreflex/physiology , Cross-Sectional Studies , Heart Rate/physiology
12.
JID Innov ; 2(2): 100082, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146483

ABSTRACT

CRISPR-Cas9 is the most straightforward genome-editing tool to date. However, its implementation across disciplines is hampered by variable genome-editing efficiencies, reduced cell viability, and low success rates in obtaining clonal cell lines. This review aims to recognize all CRISPR-Cas9‒related work within the experimental dermatology field to identify key factors for successful strategies in the different keratinocyte (KC) cell sources available. On the basis of these findings, we conclude that most groups use immortalized KCs for generating knockout KCs. Our critical considerations for future studies using CRISPR-Cas9, both for fundamental and clinical applications, may guide implementation strategies of CRISPR-Cas9 technologies in the (experimental) dermatology field.

13.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35163694

ABSTRACT

Atopic dermatitis (AD) is a common T-helper 2 (Th2) lymphocyte-mediated chronic inflammatory skin disease characterized by disturbed epidermal differentiation (e.g., filaggrin (FLG) expression) and diminished skin barrier function. Therapeutics targeting the aryl hydrocarbon receptor (AHR), such as coal tar and tapinarof, are effective in AD, yet new receptor ligands with improved potency or bioavailability are in demand to expand the AHR-targeting therapeutic arsenal. We found that carboxamide derivatives from laquinimod, tasquinimod, and roquinimex can activate AHR signaling at low nanomolar concentrations. Tasquinimod derivative (IMA-06504) and its prodrug (IMA-07101) provided full agonist activity and were most effective to induce FLG and other epidermal differentiation proteins, and counteracted IL-4 mediated repression of terminal differentiation. Partial agonist activity by other derivatives was less efficacious. The previously reported beneficial safety profile of these novel small molecules, and the herein reported therapeutic potential of specific carboxamide derivatives, provides a solid rationale for further preclinical assertation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Filaggrin Proteins/genetics , Keratinocytes/drug effects , Quinolones/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Cells, Cultured , Gene Expression Regulation , Hep G2 Cells , Humans , Interleukin-4 , Keratinocytes/metabolism , Keratinocytes/physiology , Signal Transduction
14.
J Invest Dermatol ; 142(7): 1947-1955.e6, 2022 07.
Article in English | MEDLINE | ID: mdl-34942199

ABSTRACT

Late cornified envelope proteins are predominantly expressed in the skin and other cornified epithelia. On the basis of sequence similarity, this 18-member homologous gene family has been subdivided into six groups. The LCE3 proteins have been the focus of dermatological research because the combined deletion of LCE3B and LCE3C genes (LCE3B/C-del) is a risk factor for psoriasis. We previously reported that LCE3B/C-del increases the expression of the LCE3A gene and that LCE3 proteins exert antibacterial activity. In this study, we analyzed the antimicrobial properties of other family members and the role of LCE3B/C-del in the modulation of microbiota composition of the skin and oral cavity. Differences in killing efficiency and specificity between the late cornified envelope proteins and their target microbes were found, and the amino acid content rather than the order of the well-conserved central domain of the LCE3A protein was found responsible for its antibacterial activity. In vivo, LCE3B/C-del correlated with a higher beta-diversity in the skin and oral microbiota. From these results, we conclude that all late cornified envelope proteins possess antimicrobial activity. Tissue-specific and genotype-dependent antimicrobial protein profiles impact skin and oral microbiota composition, which could direct toward LCE3B/C-del‒associated dysbiosis and a possible role for microbiota in the pathophysiology of psoriasis.


Subject(s)
Cornified Envelope Proline-Rich Proteins , Microbiota , Psoriasis , Cornified Envelope Proline-Rich Proteins/genetics , Gene Deletion , Genetic Predisposition to Disease , Humans , Microbiota/genetics , Polymorphism, Single Nucleotide , Psoriasis/genetics , Risk Factors
15.
Sci Rep ; 11(1): 15377, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34321528

ABSTRACT

The role of the Mo2C/oxide interface on multi-layer graphene (MLG) nucleation during a chemical vapor deposition (CVD) process is investigated. During the CVD process, MLG growth is only observed in the presence of a Mo2C/SiO2 interface, indicating that the chemical reactions occurring at this interface trigger the nucleation of MLG. The chemical reaction pathway is explained in four steps as (1) creation of H radicals, (2) reduction of the oxide surface, (3) formation of C-C bonds at O-H sites, and (4) expansion of graphitic domains on the Mo2C catalyst. Different Mo2C/oxide interfaces are investigated, with varying affinity for reduction in a hydrogen environment. The results demonstrate a catalyst/oxide bifunctionality on MLG nucleation, comprising of CH4 dehydrogenation by Mo2C and initial C-C bond formation at the oxide interface.

16.
J Invest Dermatol ; 141(6): 1375-1381.e1, 2021 06.
Article in English | MEDLINE | ID: mdl-34024338

ABSTRACT

CRISPR/Cas9 technology is a powerful tool used to alter the genetic landscape of various hosts. This has been exemplified by its success in the transgenic animal world where it has been utilized to develop novel mouse lines modeling numerous disease states. The technology has helped to develop both in vitro and in vivo systems that simulate diseases within the fields of epithelial biology, skin cancer biology, dermatology, and beyond. Importantly, the delivery of the single-guide RNA/Cas9 editing complex to the host cell is key for its success. In this paper, we discuss the various methods that have been utilized as delivery techniques for CRISPR/Cas9 components, the benefits and pitfalls of each, and how successful they have been at genetically modifying epidermal cells. In addition, we acknowledge recent advances in the field of dermatology that have harnessed these methods to better understand epidermal biology, identify potential therapeutic targets, or serve as novel methods to treat disease states.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Transfer Techniques , Skin Diseases/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Genetic Vectors , Humans , Keratinocytes/pathology , Mutation , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , Skin Diseases/pathology
17.
Cardiovasc Diabetol ; 20(1): 102, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33962619

ABSTRACT

BACKGROUND: Women with type 2 diabetes are disproportionally affected by macrovascular complications; we here investigated whether this is also the case for microvascular complications and retinal microvascular measures. METHODS: In a population-based cohort study of individuals aged 40-75 years (n = 3410; 49% women, 29% type 2 diabetes (oversampled by design)), we estimated sex-specific associations, and differences therein, of (pre)diabetes (reference: normal glucose metabolism), and of continuous measures of glycemia with microvascular complications and retinal measures (nephropathy, sensory neuropathy, and retinal arteriolar and venular diameters and dilatation). Sex differences were analyzed using regression models with interaction terms (i.e. sex-by- (pre)diabetes and sex-by-glycemia) and were adjusted for potential confounders. RESULTS: Men with type 2 diabetes (but not those with prediabetes) compared to men with normal glucose metabolism, (and men with higher levels of glycemia), had significantly higher prevalences of nephropathy (odds ratio: 1.58 95% CI (1.01;2.46)) and sensory neuropathy (odds ratio: 2.46 (1.67;3.63)), larger retinal arteriolar diameters (difference: 4.29 µm (1.22;7.36)) and less retinal arteriolar dilatation (difference: - 0.74% (- 1.22; - 0.25)). In women, these associations were numerically in the same direction, but generally not statistically significant (odds ratios: 1.71 (0.90;3.25) and 1.22 (0.75;1.98); differences: 0.29 µm (- 3.50;4.07) and: - 0.52% (- 1.11;0.08), respectively). Interaction analyses revealed no consistent pattern of sex differences in the associations of either prediabetes or type 2 diabetes or glycemia with microvascular complications or retinal measures. The prevalence of advanced-stage complications was too low for evaluation. CONCLUSIONS: Our findings show that women with type 2 diabetes are not disproportionately affected by early microvascular complications.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Diabetic Angiopathies/epidemiology , Health Status Disparities , Prediabetic State/epidemiology , Adult , Aged , Biomarkers/blood , Blood Glucose/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/physiopathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/physiopathology , Diabetic Neuropathies/blood , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/physiopathology , Diabetic Retinopathy/blood , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/physiopathology , Female , Humans , Male , Microcirculation , Middle Aged , Netherlands/epidemiology , Prediabetic State/blood , Prediabetic State/diagnosis , Prediabetic State/physiopathology , Prevalence , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , Sex Factors
18.
Article in English | MEDLINE | ID: mdl-33431599

ABSTRACT

INTRODUCTION: Distal sensorimotor polyneuropathy (DSPN) is common in people with diabetes but is also found in pre-diabetes. Peripheral nerve myelin damage, which can be assessed by reduced nerve conduction velocity (NCV), is an essential feature of DSPN. Emerging evidence indicates that the development of DSPN may involve the activation of the immune system. However, available studies have mainly investigated circulating immune mediators, whereas the role of immune cells remains unclear. Therefore, we aimed to test whether leukocyte subsets are associated with NCV. RESEARCH DESIGN AND METHODS: This cross-sectional study analyzed data from 850 individuals (of whom 252 and 118 had type 2 diabetes and pre-diabetes, respectively) of the Maastricht Study. NCV was measured in the peroneal and tibial motor nerves and the sural sensory nerve and summed to calculate a standardized NCV sum score. Associations between percentages of leukocyte subsets and NCV sum scores were estimated using linear regression models adjusted for demographic, lifestyle, metabolic and clinical covariates. RESULTS: After adjustment for covariates, higher percentages of basophils and CD4+ T cells were associated with lower NCV (p=0.014 and p=0.005, respectively). The percentage of CD8+ T cells was positively associated with NCV (p=0.022). These associations were not modified by glucose metabolism status (all pinteraction >0.05). No associations were found for monocytes, eosinophils, neutrophils, lymphocytes, total T cells, Treg cells and B cells. CONCLUSIONS: The associations of basophils, CD4+ and CD8+ T cells with NCV suggest that cell types from both innate and adaptive immunity may be implicated in the development of DSPN.


Subject(s)
Diabetes Mellitus, Type 2 , Adaptive Immunity , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , Humans , Neural Conduction
19.
Exp Dermatol ; 30(8): 1023-1032, 2021 08.
Article in English | MEDLINE | ID: mdl-32681572

ABSTRACT

The epidermal compartment of the skin is regenerated constantly by proliferation of epidermal keratinocytes. Differentiation of a subset of these keratinocytes allows the epidermis to retain its barrier properties. Regulation of keratinocyte fate-whether to remain proliferative or terminally differentiate-is complex and not fully understood. The objective of our study was to assess if DNA methylation changes contribute to the regulation of keratinocyte fate. We employed genome-wide MethylationEPIC beadchip array measuring approximately 850 000 probes combined with RNA sequencing of in vitro cultured non-differentiated and terminally differentiated adult human primary keratinocytes. We did not observe a correlation between methylation status and transcriptome changes. Moreover, only two differentially methylated probes were detected, of which one was located in the TRIM29 gene. Although TRIM29 knock-down resulted in lower expression levels of terminal differentiation genes, these changes were minor. From these results, we conclude that-in our in vitro experimental setup-it is unlikely that changes in DNA methylation have an important regulatory role in terminal keratinocyte differentiation.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , Epigenome/genetics , Keratinocytes/metabolism , Adult , DNA-Binding Proteins/genetics , Humans , Transcription Factors/genetics
20.
Data Brief ; 33: 106349, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33072826

ABSTRACT

The membrane phospholipid composition is not a stable bacterial characteristic but can change in response to altered environmental conditions. Here we provide the dataset of the phospholipidome and transcriptome of the microaerophilic human pathogen Campylobacter jejuni under different environmental conditions. These data have been used in Cao (2020), The unique phospholipidome of the enteric pathogen C. jejuni: Lysolipids are required for motility at low oxygen availability. Here the abundance of each phospholipid is shown during the growth of C. jejuni for 0-108 h under low and high oxygen conditions (0.3 vs 10% O2). The phospholipid data were obtained by applying high performance liquid chromatography tandem-mass spectrometry (LC-MS/MS). The transcriptomic data obtained by RNA-seq show the differential expressed genes between logarithmic and stationary grown bacteria. In addition, our data might serve as a reference information for further in-depth investigation to understand the relation between specific phospholipids and the activity of membrane associated proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...