Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arthropod Struct Dev ; 52: 100883, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31568972

ABSTRACT

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.


Subject(s)
Aphids/anatomy & histology , Aphids/physiology , Flight, Animal , Animals , Brain/anatomy & histology , Female , Organ Size
2.
Insect Sci ; 26(1): 164-170, 2019 Feb.
Article in English | MEDLINE | ID: mdl-28726267

ABSTRACT

Phenology shifts and range expansions cause organisms to experience novel day length - temperature correlations. Depending on the temporal niche, organisms may benefit or suffer from changes in day length, thus potentially affecting phenological adaptation. We assessed the impact of day length changes on larvae of Chrysoperla carnea (Stephens) and Episyrphus balteatus (De Geer), both of which prey on aphids. Larvae of E. balteatus are night-active, whereas those of C. carnea appear to be crepuscular. We subjected both species in climate chambers to day lengths of 16 : 8 L : D and, to circumvent diapause responses, 20 : 4 L : D. We recorded development times and predation rates of both species. E. balteatus grew 13% faster in the 16 : 8 L : D treatment and preyed on significantly more aphids. In contrast, C. carnea grew 13% faster in the 20 : 4 L : D treatment and higher predation rates in 20 : 4 L : D were marginally significant. Our results show that day length affects development and predation, but that the direction depends on species. Such differences in the use of day length may alter the efficiency of biocontrol agents in a changing climate.


Subject(s)
Aphids , Diptera/growth & development , Food Chain , Photoperiod , Predatory Behavior , Animals
3.
Sci Rep ; 7(1): 14906, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097765

ABSTRACT

Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.


Subject(s)
Aphids/physiology , Circadian Clocks , Animals , Aphids/metabolism , Circadian Rhythm , Darkness , Locomotion , Seasons
4.
J Insect Sci ; 162016.
Article in English | MEDLINE | ID: mdl-27012868

ABSTRACT

Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum(Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.


Subject(s)
Aphids/physiology , Circadian Rhythm/physiology , Animal Feed , Animals , Circadian Clocks/physiology , Diet , Reproduction/physiology , Reproduction, Asexual/physiology
5.
PeerJ ; 3: e1103, 2015.
Article in English | MEDLINE | ID: mdl-26207194

ABSTRACT

Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...