Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804239

ABSTRACT

Cancer is one of the deadliest diseases in human history with extremely poor prognosis. Although many traditional therapeutic modalities-such as surgery, chemotherapy, and radiation therapy-have proved to be successful in inhibiting the growth of tumor cells, their side effects may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine approach for cancer therapy using functionalized nanomaterial has been gaining ground recently. Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials, reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good candidate for cancer photothermal therapy due to its excellent photothermal conversion in the near infrared range, large specific surface area for drug loading, as well as functional groups for functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design, multifunctional nanosystems could be designed based on rGO, which are endowed with promising temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This could be further augmented by additional advantages offered by functionalized rGO, such as high biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This was followed by in-depth review of application of functionalized rGO in different cancer treatment modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy, chemotherapy/phototherapy, and photothermal/immunotherapy.


Subject(s)
Graphite/therapeutic use , Nanomedicine/trends , Nanostructures/therapeutic use , Neoplasms/therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Drug Carriers/chemistry , Drug Carriers/therapeutic use , Graphite/chemistry , Humans , Nanostructures/chemistry , Neoplasms/pathology , Photochemotherapy/methods , Phototherapy/methods
2.
Cancers (Basel) ; 12(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142721

ABSTRACT

The consistent expression of disialoganglioside GD2 in neuroblastoma tumor cells and its restricted expression in normal tissues open the possibility to use it for molecularly targeted neuroblastoma therapy. On the other hand, immunoliposomes combining antibody-mediated tumor recognition with liposomal delivery of chemotherapeutics have been proved to enhance therapeutic efficacy in brain tumors. Therefore, we develop immunoliposomes (ImmuLipCP) conjugated with anti-GD2 antibody, for targeted co-delivery of CPT-11 and panobinostat in this study. U87MG human glioma cell line and its drug resistant variant (U87DR), which were confirmed to be associated with low and high expression of cell surface GD2, were employed to compare the targeting efficacy. From in vitro cytotoxicity assay, CPT-11 showed synergism drug interaction with panobinostat to support co-delivery of both drugs with ImmuLipCP for targeted synergistic combination chemotherapy. The molecular targeting mechanism was elucidated from intracellular uptake efficacy by confocal microscopy and flow cytometry analysis, where 6-fold increase in liposome and 1.8-fold increase in drug uptake efficiency was found using targeted liposomes. This enhanced intracellular trafficking for drug delivery endows ImmuLipCP with pronounced cytotoxicity toward U87DR cells in vitro, with 1.6-fold increase of apoptosis rate. Using xenograft nude mice model with subcutaneously implanted U87DR cells, we observe similar biodistribution profile but 5.1 times higher accumulation rate of ImmuLip from in vivo imaging system (IVIS) observation of Cy5.5-labelled liposomes. Taking advantage of this highly efficient GD-2 targeting, ImmuLipCP was demonstrated to be an effective cancer treatment modality to significantly enhance the anti-cancer therapeutic efficacy in U87DR tumors, shown from the significant reduced tumor size in and prolonged survival time of experiment animals as well as diminished expression of cell proliferation and enhanced expression of apoptosis marker proteins in tumor section.

3.
Int J Mol Sci ; 21(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947689

ABSTRACT

In the context of using bone graft materials to restore and improve the function of damaged bone tissues, macroporous biodegradable composite bone graft scaffolds have osteoinductive properties that allow them to provide a suitable environment for bone regeneration. Hydroxyapatite (HAP) and whitlockite (WLKT) are the two major components of hard tissues such as bone and teeth. Because of their biocompatibility and osteoinductivity, we synthesized HAP (nHAP) and WLKT nanoparticles (nWLKT) by using the chemical precipitation method. The nanoparticles were separately incorporated within poly (lactic-co-glycolic acid) (PLGA) microspheres. Following this, the composite microspheres were converted to macroporous bone grafts with sufficient mechanical strength in pin or screw shape through surface sintering. We characterized physico-chemical and mechanical properties of the nanoparticles and composites. The biocompatibility of the grafts was further tested through in vitro cell adhesion and proliferation studies using rabbit bone marrow stem cells. The ability to promote osteogenic differentiation was tested through alkaline phosphate activity and immunofluorescence staining of bone marker proteins. For in vivo study, the bone pins were implanted in tibia bone defects in rabbits to compare the bone regeneration ability though H&E, Masson's trichrome and immunohistochemical staining. The results revealed similar physico-chemical characteristics and cellular response of PLGA/nHAP and PLGA/nWLKT scaffolds but the latter is associated with higher osteogenic potential towards BMSCs, pointing out the possibility to use this ceramic nanoparticle to prepare a sintered composite microsphere scaffold for potential bone grafts and tissue engineered implants.


Subject(s)
Bone Regeneration , Calcium Phosphates , Durapatite , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering , Tissue Scaffolds , Animals , Biocompatible Materials , Biomarkers , Bone Transplantation , Calcium Phosphates/chemistry , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Durapatite/chemistry , Hot Temperature , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Rabbits , Tissue Engineering/methods
4.
Curr Med Chem ; 27(16): 2734-2776, 2020.
Article in English | MEDLINE | ID: mdl-31480996

ABSTRACT

It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for the standard in vitro experiments, their mechanical, structural, and compositional characteristics can alter cell functions drastically. Many scientists reported that cells behave more natively when cultured in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell culture environment that can better mimic the biochemical and mechanical properties of the ECM. In this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be tuned and altered systematically, these materials can function actively in a defined culture medium to support long-term self-renewal of various cells. The physico-chemical and biological properties of the materials used for developing hydrogel should be tunable in accordance with culture needs. Various types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture applications. In this review, we present an overview of various hydrogels based on natural polymers that can be used for cell culture, irrespective of types of applications. We also explain how each hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative engineering.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Extracellular Matrix , Hydrogels , Polymers , Tissue Engineering
5.
Acta Biomater ; 72: 121-136, 2018 05.
Article in English | MEDLINE | ID: mdl-29626695

ABSTRACT

The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery. STATEMENT OF SIGNIFICANCE: A multi-functional anti-adhesion barrier membrane that could reduce fibroblasts attachment and penetration while simultaneously prevent post-surgical infection and inflammation is urgently needed. To this end, we prepared electrospun core-shell hyaluronic acid + ibuprofen/polyethylene glycol + polycaprolactone + Ag nanoparticles nanofibrous membranes by co-axial electrospinning as an ideal anti-adhesive membrane. The core-shell structure could meet the need of a desirable anti-adhesion barrier through release of ibuprofen and Ag nanoparticles to reduce infection and inflammation while hyaluronic acid can reduce fibroblasts adhesion. The superior performance of this multi-functional core-shell nanofibrous membrane in preventing peritendinous adhesion and post-surgical inflammation was demonstrated in a rabbit flexor tendon rupture model.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Membranes, Artificial , Tendon Injuries/surgery , Tissue Adhesions/therapy , Animals , Anti-Bacterial Agents/chemistry , Fibroblasts/metabolism , Fibroblasts/pathology , Inflammation/metabolism , Inflammation/pathology , Inflammation/therapy , Metal Nanoparticles/chemistry , Mice , NIH 3T3 Cells , Rabbits , Silver/chemistry , Silver/pharmacology , Tendon Injuries/metabolism , Tendon Injuries/pathology , Tendons/metabolism , Tendons/pathology , Tissue Adhesions/metabolism , Tissue Adhesions/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...