Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687212

ABSTRACT

Proinflammatory cytokine levels and host genetic makeup are key determinants of Clostridioides difficile infection (CDI) outcomes. We previously reported that blocking the inflammatory cytokine macrophage migration inhibitory factor (MIF) ameliorates CDI. Here, we determined kinetics of MIF production and its association with a common genetic variant in leptin receptor (LEPR) using blood from patients with CDI. We found highest plasma MIF early after C difficile exposure and in individuals who express mutant/derived LEPR. Our data suggest that early-phase CDI provides a possible window of opportunity in which MIF targeting, potentially in combination with LEPR genotype, could have therapeutic utility.

2.
Exp Biol Med (Maywood) ; 246(22): 2399-2406, 2021 11.
Article in English | MEDLINE | ID: mdl-33715528

ABSTRACT

Nitric oxide is a versatile mediator formed by enzymes called nitric oxide synthases. It has numerous homeostatic functions and important roles in inflammation. Within the inflamed brain, microglia and astrocytes produce large amounts of nitric oxide during inflammation. Excessive nitric oxide causes neuronal toxicity and death and mesenchymal stem cells can be used as an approach to limit the neuronal damage caused by neuroinflammation. Mesenchymal stem cell therapy ameliorates inflammation and neuronal damage in disease models of Alzheimer's disease, Parkinson's disease, and other neuroinflammatory disorders. Interestingly, we have reported that in vitro, mesenchymal stem cells themselves contribute to a rise in nitric oxide levels through microglial cues. This may be an undesirable effect and highlights a possible need to explore acellular approaches for mesenchymal stem cell therapy in the central nervous system.


Subject(s)
Mesenchymal Stem Cell Transplantation , Neuroinflammatory Diseases/therapy , Nitric Oxide/metabolism , Animals , Humans , Neuroinflammatory Diseases/metabolism , Nitric Oxide/antagonists & inhibitors
3.
Front Cell Infect Microbiol ; 11: 619192, 2021.
Article in English | MEDLINE | ID: mdl-33718269

ABSTRACT

Neutrophils are key first-responders in the innate immune response to C. difficile infection (CDI) and play a central role in disease pathogenesis. Studies have clearly shown that tissue neutrophil numbers need to be tightly regulated for optimal CDI outcomes: while excessive colonic neutrophilia is associated with severe CDI, neutrophil depletion also results in worse outcomes. However, the biological mechanisms that control CDI-induced neutrophilia remain poorly defined. C-X-C chemokine receptor 2 (CXCR2) is a chemotactic receptor that is critical in neutrophil mobilization from bone marrow to blood and tissue sites. We have previously reported that a single nucleotide polymorphism (SNP) in leptin receptor (LEPR), present in up to 50% of people, influenced CDI-induced neutrophil CXCR2 expression and tissue neutrophilia. Homozygosity for mutant LEPR (i.e. RR genotype) was associated with higher CXCR2 expression and more tissue neutrophils. Here, we investigated the biological mechanisms that regulate neutrophil CXCR2 expression after CDI, and the influence of host genetics on this process. Our data reveal that: a) CXCR2 plays a key role in CDI-induced neutrophil extravasation from blood to colonic tissue; b) plasma from C. difficile-infected mice upregulated CXCR2 on bone marrow neutrophils; c) plasma from C. difficile-infected RR mice induced a higher magnitude of CXCR2 upregulation and had more IL-1ß; and d) IL-1ß neutralization reduced CXCR2 expression on bone marrow and blood neutrophils and their subsequent accrual to colonic tissue. In sum, our data indicate that IL-1ß is a key molecular mediator that communicates between gastro-intestinal tract (i.e. site of CDI) and bone marrow (i.e. primary neutrophil reservoir) and regulates the intensity of CDI-induced tissue neutrophilia by modulating CXCR2 expression. Further, our studies highlight the importance of host genetics in affecting these innate immune responses and provide novel insights into the mechanisms by which a common SNP influences CDI-induced neutrophilia.


Subject(s)
Clostridioides difficile , Neutrophils , Animals , Clostridioides , Clostridium Infections , Interleukin-1beta/genetics , Mice , Polymorphism, Single Nucleotide , Receptors, Interleukin-8B , Receptors, Leptin
4.
Mucosal Immunol ; 14(2): 500-510, 2021 03.
Article in English | MEDLINE | ID: mdl-32811993

ABSTRACT

Severe Clostridiodes difficile infection (CDI) is life-threatening and responds poorly to treatment. Obesity is associated with development of severe CDI. Therefore, to define the mechanisms that exacerbate disease severity, we examined CDI pathogenesis in high-fat diet (HFD)-fed obese mice. Compared to control mice, HFD-fed mice failed to clear C. difficile bacteria which resulted in protracted diarrhea, weight loss and colonic damage. After infection, HFD-induced obese mice had an intestinal bile acid (BA) pool that was dominated by primary BAs which are known promoters of C. difficile spore germination, and lacked secondary BAs that inhibit C. difficile growth. Concurrently, synthesis of primary BAs from liver was significantly increased in C. difficile-infected HFD-fed mice. A key pathway that regulates hepatic BA synthesis is via feedback inhibition from intestinal Farnesoid X receptors (FXRs). Our data reveal that the proportion of FXR agonist BAs to FXR antagonist BAs in the intestinal lumen was significantly reduced in HFD-fed mice after CDI. Treatment of HFD-fed mice with an FXR agonist Obeticholic acid, resulted in decreased primary BA synthesis, fewer C. difficile bacteria and better CDI outcomes. Thus, OCA treatment holds promise as a therapy for severe CDI.


Subject(s)
Anticholesteremic Agents/therapeutic use , Chenodeoxycholic Acid/analogs & derivatives , Clostridioides difficile/physiology , Clostridium Infections/drug therapy , Obesity/drug therapy , Animals , Chenodeoxycholic Acid/therapeutic use , Diet, High-Fat , Disease Models, Animal , Disease Progression , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , RNA-Binding Proteins/metabolism
5.
Front Immunol ; 11: 607957, 2020.
Article in English | MEDLINE | ID: mdl-33391278

ABSTRACT

Tuberculosis has been associated with increased risk of atherosclerotic cardiovascular disease. To examine whether mycobacterial infection exacerbates atherosclerosis development in experimental conditions, we infected low-density lipoprotein receptor knockout (Ldlr-/-) mice with Mycobacterium bovis Bacille-Calmette-Guérin (BCG), an attenuated strain of the Mycobacterium tuberculosis complex. Twelve-week old male Ldlr-/- mice were infected with BCG (0.3-3.0x106 colony-forming units) via the intranasal route. Mice were subsequently fed a western-type diet containing 21% fat and 0.2% cholesterol for up to 16 weeks. Age-matched uninfected Ldlr-/- mice fed with an identical diet served as controls. Atherosclerotic lesions in aorta were examined using Oil Red O staining. Changes induced by BCG infection on the immunophenotyping profile of circulating T lymphocytes and monocytes were assessed using flow cytometry. BCG infection increased atherosclerotic lesions in en face aorta after 8 weeks (plaque ratio; 0.021±0.01 vs. 0.013±0.01; p = 0.011) and 16 weeks (plaque ratio, 0.15±0.13 vs. 0.06±0.02; p = 0.003). No significant differences in plasma cholesterol or triglyceride levels were observed between infected and uninfected mice. Compared to uninfected mice, BCG infection increased systemic CD4/CD8 T cell ratio and the proportion of Ly6Clow non-classical monocytes at weeks 8 and 16. Aortic plaque ratios correlated with CD4/CD8 T cell ratios (Spearman's rho = 0.498; p = 0.001) and the proportion of Ly6Clow non-classical monocytes (Spearman's rho = 0.629; p < 0.001) at week 16. In conclusion, BCG infection expanded the proportion of CD4+ T cell and Ly6Clow monocytes, and aggravated atherosclerosis formation in the aortas of hyperlipidemic Ldlr-/- mice. Our results indicate that mycobacterial infection is capable of enhancing atherosclerosis development.


Subject(s)
Aorta/microbiology , Aortic Diseases/microbiology , Atherosclerosis/microbiology , Mycobacterium bovis/pathogenicity , Plaque, Atherosclerotic , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/microbiology , Diet, High-Fat , Disease Models, Animal , Disease Progression , Male , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/microbiology , Receptors, LDL/genetics , Receptors, LDL/metabolism
6.
Cardiovasc Eng Technol ; 9(3): 529-538, 2018 09.
Article in English | MEDLINE | ID: mdl-29948837

ABSTRACT

Developing experimental models to study ischemic heart disease is necessary for understanding of biological mechanisms to improve the therapeutic approaches for restoring cardiomyocytes function following injury. The aim of this study was to develop an in vitro hypoxic/re-oxygenation model of ischemia using primary human cardiomyocytes (HCM) and define subsequent cytotoxic effects. HCM were cultured in serum and glucose free medium in hypoxic condition with 1% O2 ranging from 30 min to 12 h. The optimal hypoxic exposure time was determined using Hypoxia Inducible Factor 1α (HIF-1α) as the hypoxic marker. Subsequently, the cells were moved to normoxic condition for 3, 6 and 9 h to replicate the re-oxygenation phase. Optimal period of hypoxic/re-oxygenation was determined based on 50% mitochondrial injury via 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay and cytotoxicity via lactate dehydrogenase (LDH) assay. It was found that the number of cells expressing HIF-1α increased with hypoxic time and 3 h was sufficient to stimulate the expression of this marker in all the cells. Upon re-oxygenation, mitochondrial activity reduced significantly whereas the cytotoxicity increased significantly with time. Six hours of re-oxygenation was optimal to induce reversible cell injury. The injury became irreversible after 9 h as indicated by > 60% LDH leakage compared to the control group cultured in normal condition. Under optimized hypoxic reoxygenation experimental conditions, mesenchymal stem cells formed nanotube with ischemic HCM and facilitated transfer of mitochondria suggesting the feasibility of using this as a model system to study molecular mechanisms of myocardial injury and rescue.


Subject(s)
Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Biomarkers/metabolism , Cell Hypoxia , Cell Survival , Cells, Cultured , Coculture Techniques , Glucose/deficiency , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , L-Lactate Dehydrogenase/metabolism , Mesenchymal Stem Cells/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Time Factors
7.
Anaerobe ; 53: 56-63, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29944928

ABSTRACT

Clostridium difficile is an important cause of nosocomial diarrhea in the western world. Toxins (A, B, and binary toxins) generated by C. difficile bacteria damage intestinal epithelial cells. Hallmarks of host response to C. difficile infection (CDI) include upregulation of inflammatory mediators and tissue infiltration by immune cells. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that is known to enhance the host immune response to infectious pathogens. Additionally, MIF can adversely impact host survival to numerous infections. The role of MIF in the pathogenesis of CDI remains poorly understood. Here, we show that patients with CDI had significantly higher circulating MIF compared to patients who had diarrhea but tested negative for C. difficile (non-CDI controls). Similarly, in a mouse model, C. difficile challenge significantly increased levels of plasma and tissue MIF. Antibody-mediated depletion of MIF decreased C. difficile-induced inflammatory responses, clinical disease, and mortality. Together, these results uncover a potential role for MIF in exacerbating CDI and suggest that use of anti-MIF antibodies may represent a therapeutic strategy to curb host inflammatory responses and improve disease outcomes in CDI.


Subject(s)
Antibodies/administration & dosage , Clostridioides difficile/growth & development , Clostridium Infections/pathology , Clostridium Infections/therapy , Immunologic Factors/administration & dosage , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/blood , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Humans , Male , Mice, Inbred C57BL , Survival Analysis , Treatment Outcome
8.
Anaerobe ; 41: 85-90, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27063896

ABSTRACT

Clostridium difficile is the most important cause of nosocomial infectious diarrhea in the western world. C. difficile infections are a major healthcare burden with approximately 500,000 new cases every year and an estimated annual cost of nearly $1 billion in the U.S. Furthermore, the infections are no longer restricted to health care facilities, and recent studies indicate spread of C. difficile infection to the community as well. The clinical spectrum of C. difficile infection ranges from asymptomatic colonization to severe diarrhea, fulminant colitis and death. This spectrum results from a complex interplay between bacterial virulence factors, the colonic microbiome and the host inflammatory response. The overall vigor of host inflammatory response is believed to be an important determinant of C. difficile disease severity, and a more robust immune response is associated with worse outcomes. Neutrophils are the primary cells that respond to C. difficile invasion and neutrophilic inflammation is the hallmark of C. difficile-associated disease. In this review, we will focus on the role of neutrophils (infiltration to infected tissue, pathogen clearance and resolution of inflammation) in the immuno-pathogenesis of C. difficile-associated disease (CDAD).


Subject(s)
Clostridioides difficile/immunology , Enterocolitis, Pseudomembranous/immunology , Neutrophils/immunology , Animals , Colitis/immunology , Colitis/microbiology , Enterocolitis, Pseudomembranous/microbiology , Humans , Immunity, Innate , Neutrophil Infiltration
9.
Cell Biol Int ; 40(1): 55-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26289249

ABSTRACT

The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications.


Subject(s)
Cell Differentiation/drug effects , Fibroblast Growth Factor 2/pharmacology , Hydrocortisone/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/cytology , Adult , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Lineage , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Myocardial Infarction , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Sternum/cytology
10.
Cell Biol Int ; 39(12): 1355-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26194799

ABSTRACT

Microglia are resident macrophages of the central nervous system (CNS). Apart from playing vital roles as sentinel cells, they are crucial in physiological processes such as synaptic pruning during brain development. CNS disorders require an understanding of the contribution of each cellular compartment to the pathogenesis. Elucidating the role of microglia in disease development and progression in the intricate CNS environment is technically challenging and requires the establishment of reliable, reproducible techniques to isolate and culture microglia. A number of different protocols have been developed for isolation of neonatal microglia and here we compare two widely used methods, namely, mild trypsinization and EasySep® magnetic separation. EasySep® magnetic separation provided higher microglia yield, and flow cytometric evaluation of CD11b and F4/80 markers revealed that EasySep® separation method also produced significantly higher purity compared to mild trypsinization. Microglia isolated using EasySep® separation method were functional, as demonstrated by the generation of nitric oxide, IL-6, TNF-α, and MCP-1 in response to lipopolysaccharide stimulation. In summary, this study has revealed that magnetic separation is superior to mild trypsinization in terms of yield and purity of microglia.


Subject(s)
Brain/cytology , Brain/physiology , Flow Cytometry/methods , Immunomagnetic Separation/methods , Microglia/physiology , Animals , Animals, Newborn , Cell Separation/methods , Cells, Cultured , Mice , Mice, Inbred C57BL
11.
J Neuroinflammation ; 11: 149, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25182840

ABSTRACT

BACKGROUND: Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia. METHODS: BV2 microglia were cultured with MSC and stimulated with 1 µg/ml lipopolysaccharide. Using an inducible nitric oxide synthase inhibitor, tritiated thymidine (3H-TdR) incorporation assay was performed to determine the role of nitric oxide in the anti-proliferative effect of MSC. We also studied apoptosis and the cell cycle of both cell types using flow cytometry and explored their cytokine profile using protein and cytometric arrays. Moreover, the role of IL-6 and TNF-α in immunomodulation was deduced using specific blocking antibodies and recombinant proteins. RESULTS: MSC reduces microglia proliferation upon lipopolysaccharide stimulation by 21 to 28% and modulates the levels of nitric oxide, IL-6 and TNF-α. The role of nitric oxide in conferring the anti-proliferative effect of MSC was ruled out. Furthermore, we found that MSC exert their anti-proliferative effect by restoring the percentage of BV2 cells at S and G2/M phase to levels similar to unstimulated cells. MSC undergo a G0/G1 arrest while exerting this effect. We have also identified that MSC-mediated modulation of microglia is independent of IL-6, whilst reduction of TNF-α in co-culture is critical for inhibition of microglia proliferation. CONCLUSIONS: Our study demonstrates that MSC inhibit microglia proliferation independent of nitric oxide and IL-6, although reduction of TNF-α is critical for this effect. The inhibition of proliferation is through cell cycle modulation. These findings shed light on the mechanisms of microglial immunomodulation by MSC.


Subject(s)
Cell Proliferation/physiology , Cytokines/metabolism , Mesenchymal Stem Cells/physiology , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Antigens, CD/metabolism , Apoptosis , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Transformed , Cell Proliferation/drug effects , Coculture Techniques , Enzyme Inhibitors/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Protein Array Analysis , Thymidine/metabolism , Time Factors , Tritium/metabolism
12.
World J Stem Cells ; 5(1): 34-42, 2013 Jan 26.
Article in English | MEDLINE | ID: mdl-23362438

ABSTRACT

AIM: To assess the capacity to isolate and expand mesenchymal stem cells (MSC) from bone marrow of CBA/Ca, ICR and Balb/c mice. METHODS: Bone marrow of tibia and femur were flushed, cultured and maintained in supplemented Dulbecco's modified Eagle's medium. MSC immunophenotype of cultures were tracked along increasing passages for positivity to CD106, Sca-1 and CD44 and negativity to CD45, CD11b and MHC class II. Differentiation capacity of MSC towards osteogenic and adipogenic lineages were also assessed. RESULTS: MSC were successfully cultured from bone marrow of all 3 strains, albeit differences in the temporal expression of certain surface antigens. Their differentiation into osteocytes and adipocytes were also observed. MSC from all 3 mouse strains demonstrated a shift from a haematopoietic phenotype (CD106(-)CD45(+)CD11b(+)Sca-1(low)) to typical MSC phenotype (CD106(+)CD45(-)CD11b(-)Sca-1(high)) with increasing passages. CONCLUSION: Information garnered assists us in the decision of selecting a mouse strain to generate MSC from for downstream experimentation.

13.
Stem Cell Res Ther ; 4(1): 12, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23356521

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm. METHODS: Mouse MSCs were cultured from femoral and tibial bone marrow aspirates and characterized. MSCs were cocultured with BV2 microglia at four seeding-density ratios (1:0.2, 1:0.1, 1:0.02, and 1:0.01 (BV2/MSC)), and stimulated with 1 µg/ml LPS. In certain assays, MSCs were separated from BV2 cells with a cell-culture insert to determine the influence of soluble factors on downstream responses. Inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) were measured in cocultures, and MSC and BV2 chemotactic ability determined by migration assays. RESULTS: We demonstrated MSCs to increase expression of NO and IL-6 and decrease TNF-α in LPS-treated cocultures. These effects are differentially mediated by soluble factors and cell-to-cell contact. In response to an LPS stimulus, MSCs display distinct behaviors, including expressing IL-6 and very high levels of the chemokine CCL2. Microglia increase their migration almost fourfold in the presence of LPS, and interestingly, MSCs provide an equal impetus for microglia locomotion. MSCs do not migrate toward LPS but migrate toward microglia, with their chemotaxis increasing when microglia are activated. Similarly, MSCs do not produce NO when exposed to LPS, but secrete large amounts when exposed to soluble factors from activated microglia. This demonstrates that certain phenotypic changes of MSCs are governed by inflammatory microglia, and not by the inflammatory stimulus. Nonetheless, LPS appears to "prime" the NO-secretory effects of MSCs, as prior treatment with LPS triggers a bigger NO response from MSCs after exposure to microglial soluble factors. CONCLUSIONS: These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.


Subject(s)
Bone Marrow/drug effects , Bone Marrow/metabolism , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/metabolism , Microglia/drug effects , Microglia/metabolism , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CCL2/metabolism , Down-Regulation/drug effects , Femur/drug effects , Femur/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Male , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Nitric Oxide/metabolism , Tibia/drug effects , Tibia/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...