Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763930

ABSTRACT

Vibrio cholerae is a halophilic Gram-negative bacterial species and the etiological agent of cholera. Here, we report the draft genome sequence of an environmental V. cholerae strain, 2012Env-25, obtained using Oxford Nanopore Technologies (ONT) to provide insights into the ecology, evolution, and pathogenic potential of this bacterium.

2.
Syst Appl Microbiol ; 40(3): 160-170, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28284522

ABSTRACT

Rumen houses a plethora of symbiotic microorganisms empowering the host to hydrolyze plant lignocellulose. In this study, NGS based metagenomic approach coupled with bioinformatic analysis was employed to gain an insight into the deconstruction of lignocellulose by carbohydrate-active enzymes (CAZymes) in Indian crossbred Holstein-Friesian cattle. Cattle rumen metagenomic DNA was sequenced using Illumina-MiSeq and 1.9 gigabases of data generated with an average read length of 871 bp. Analysis of the assembled sequences by Pfam-based Carbohydrate-active enzyme Analysis Toolkit identified 17,164 putative protein-encoding CAZymes belonging to different families of glycoside hydrolases (7574), glycosyltransferases (5185), carbohydrate-binding modules (2418), carbohydrate esterases (1516), auxiliary activities (434) and polysaccharide lyases (37). Phylogenetic analysis of putative CAZymes revealed that a significant proportion of CAZymes were contributed by bacteria belonging to the phylum Bacteroidetes (40%), Firmicutes (30%) and Proteobacteria (10%). The comparative analysis of HF cross rumen metagenome with other herbivore metagenomes indicated that Indian crossbred cattle rumen is endowed with a battery of CAZymes that may play a central role in lignocellulose deconstruction. The extensive catalog of enzymes reported in our study that hydrolyzes plant lignocellulose biomass, can be further explored for the better feed utilization in ruminants and also for different industrial applications.


Subject(s)
Hydrolases , Microbiota , Rumen/microbiology , Animals , Biodiversity , Cattle , Cluster Analysis , Data Mining , Hydrolases/classification , Hydrolases/genetics , Metagenome , Metagenomics
3.
AMB Express ; 7(1): 13, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28050853

ABSTRACT

The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.

SELECTION OF CITATIONS
SEARCH DETAIL
...