Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(12): e2208860, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598813

ABSTRACT

Developing highly efficient multifunctional electrocatalysts is crucial for future sustainable energy  pursuits, but remains a great challenge. Herein, a facile synthetic strategy is used to confine atomically thin Pd-PdO nanodomains to amorphous Ru metallene oxide (RuO2 ). The as-synthesized electrocatalyst (Pd2 RuOx-0.5 h) exhibits excellent catalytic activity toward the pH-universal hydrogen evolution reaction (η10  = 14 mV in 1 m KOH, η10  = 12 mV in 0.5 m H2 SO4 , and η10  = 22 mV in 1 m PBS), alkaline oxygen evolution reaction (η10  = 225 mV), and overall water splitting (E10  = 1.49 V) with high mass activity and operational stability. Further reduction endows the material (Pd2 RuOx-2 h) with a promising alkaline oxygen reduction activity, evidenced by high halfway potential, four-electron selectivity, and excellent poison tolerance. The enhanced catalytic activity is attributed to the rational integration of favorable nanostructures, including 1) the atomically thin nanosheet morphology, 2) the coexisting amorphous and defective crystalline phases, and 3) the multi-component heterostructural features. These structural factors effectively regulate the material's electronic configuration and the adsorption of intermediates at the active sites for favorable reaction energetics.

2.
Small Methods ; 5(2): e2000751, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34927885

ABSTRACT

Efficient bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are required for metal air batteries, to replace costly metals, such as Pt and Ir/Ru based compounds, which are typically used as benchmarks for ORR and OER, respectively. Isolated single atomic sites coordinated with nitrogen on carbon supports (M-N-C) have promising performance for replacement of precious metal catalysts. However, most of monometallic M-N-C catalysts demonstrate unsatisfactory bifunctional performance. Herein, a facile way of preparing bimetallic Fe and Co sites entrapped in nitrogen-doped hollow carbon nanospheres (Fe,Co-SA/CS) is explored, drawing on the unique structure and pore characteristics of Zeolitic imidazole frameworks and molecular size of Ferrocene, an Fe containing species. Fe,Co-SA/CS showed an ORR onset potential and half wave potential of 0.96 and 0.86 V, respectively. For OER, (Fe,Co)-SA/CS attained its anodic current density of 10 mA cm-2 at an overpotential of 360 mV. Interestingly, the oxygen electrode activity (ΔE) for (Fe,Co)-SA/CS and commercial Pt/C-RuO2 is calculated to be 0.73 V, exhibiting the bifunctional catalytic activity of (Fe,Co)-SA/CS. (Fe,Co)-SA/CS evidenced desirable specific capacity and cyclic stability than Pt/C-RuO2 mixture when utilized as an air cathode in a homemade Zinc-air battery.

3.
ACS Appl Mater Interfaces ; 11(43): 39798-39808, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31613589

ABSTRACT

Generally, a cost-effective electrocatalytic process that offers an efficient electrochemical energy conversion and storage necessitates a rational design and selection of structure as well as composition of active catalytic centers. Herein, we achieved an unprecedented surface morphology and shape tuning to obtain hollow NiCo2Px with a continuum of active sharp edges (spiked) on a hollow spherical surface by means of facile hydrothermal treatments. The highly exposed, branched spike-covered hollow structure of NiCo2Px shows remarkable performance enhancement for hydrogen evolution reaction and oxygen evolution reaction in a wide range of Ph solutions. This catalytic performance was utilized to assemble a water electrolyzer working in an alkaline environment. In particular, this electrolyzer only requires an output voltage of 1.62 V to deliver a current density of 10 mA cm-2 and shows almost no decrease in this value even after a continuous run for 50 h. The new surface-engineered NiCo2Px establishes to be highly active, cost-effective, and robust toward electrochemical energy conversion. Additionally, the charge storage capabilities of spike-covered hollow NiCo2Px structures is also investigated, and it shows a specific capacitance of 682 and 608 F g-1 at a current density of 1 A g-1 with excellent rate capacitance retention. Thus, the importance of surface engineering of nanocrystalline morphologies in design toward the development of a multifunctional electrocatalyst for efficient water splitting and charge storage applications is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...