Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22276249

ABSTRACT

INTRODUCTIONChest imaging is necessary for diagnosis of COVID-19 pneumonia, but current risk stratification tools do not consider radiographic severity. We quantified radiographic heterogeneity among inpatients with COVID-19 with the Radiographic Assessment of Lung Edema (RALE) score on Chest X-rays (CXRs). METHODSWe performed independent RALE scoring by [≥]2 reviewers on baseline CXRs from 425 inpatients with COVID-19 (discovery dataset), we recorded clinical variables and outcomes, and measured plasma host-response biomarkers and SARS-CoV-2 RNA load from subjects with available biospecimens. RESULTSWe found excellent inter-rater agreement for RALE scores (intraclass correlation co-efficient=0.93). The required level of respiratory support at the time of baseline CXRs (supplemental oxygen or non-invasive ventilation [n=178]; invasive-mechanical ventilation [n=234], extracorporeal membrane oxygenation [n=13]) was significantly associated with RALE scores (median [interquartile range]: 20.0[14.1-26.7], 26.0[20.5-34.0] and 44.5[34.5-48.0], respectively, p<0.0001). Among invasively-ventilated patients, RALE scores were significantly associated with worse respiratory mechanics (plateau and driving pressure) and gas exchange metrics (PaO2/FiO2 and ventilatory ratio), as well as higher plasma levels of IL-6, sRAGE and TNFR1 levels (p<0.05). RALE scores were independently associated with 90-day survival in a multivariate Cox proportional hazards model (adjusted hazard ratio 1.04[1.02-1.07], p=0.002). We validated significant associations of RALE scores with baseline severity and mortality in an independent dataset of 415 COVID-19 inpatients. CONCLUSIONReproducible assessment of radiographic severity revealed significant associations with clinical and physiologic severity, host-response biomarkers and clinical outcome in COVID-19 pneumonia. Incorporation of radiographic severity assessments may provide prognostic and treatment allocation guidance in patients hospitalized with COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-267351

ABSTRACT

The SARS-CoV-2 pandemic has already killed more than 800,000 people worldwide. To gain entry, the virus uses its spike protein to bind to host hACE-2 receptors on the host cell surface and mediate fusion between viral and cell membranes. As initial steps leading to virus entry involves significant changes in protein conformation as well as in the electrostatic environment in the vicinity of the spike-hACE-2 complex, we explored the sensitivity of the interaction to changes in ionic strength through computational simulations and surface plasmon resonance. We identified two regions in the receptor-binding domain (RBD), E1 and E2, which interact differently with hACE-2. At high salt concentration, E2-mediated interactions are weakened but are compensated by strengthening E1-mediated hydrophobic interactions. These results provide a detailed molecular understanding of spike RBD/hACE-2 complex formation and stability under a wide range of ionic strengths. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=192 SRC="FIGDIR/small/267351v1_ufig1.gif" ALT="Figure 1"> View larger version (62K): org.highwire.dtl.DTLVardef@1a7dc02org.highwire.dtl.DTLVardef@15d3c78org.highwire.dtl.DTLVardef@2d09c1org.highwire.dtl.DTLVardef@db78a9_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELECTION OF CITATIONS
SEARCH DETAIL