Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(9): 3679-3684, 2021 May.
Article in English | MEDLINE | ID: mdl-33976767

ABSTRACT

Lacking an external shell and a rigid endoskeleton, octopuses exhibit a remarkable flexibility in their movements. Bipedal locomotion is perhaps the most iconic example in this regard. Until recently, this peculiar mode of locomotion had been observed only in two species of tropical octopuses: Amphioctopus marginatus and Abdopus aculeatus. Yet, recent evidence indicates that bipedal walking is also part of the behavioral repertoire of the common octopus, Octopus vulgaris. Here we report a further observation of a defense behavior that encompasses both postural and locomotory elements of bipedal locomotion in this cephalopod. By highlighting differences and similarities with the other recently published report, we provide preliminary considerations with regard to bipedal locomotion in the common octopus.

2.
J Exp Biol ; 219(Pt 18): 2928-2933, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27655826

ABSTRACT

The world is three-dimensional; hence, even surface-bound animals need to learn vertical spatial information. Separate encoding of vertical and horizontal spatial information seems to be the common strategy regardless of the locomotory style of animals. However, a difference seems to exist in the way freely moving species, such as fish, learn and integrate spatial information as opposed to surface-bound species, which prioritize the horizontal dimension and encode it with a higher resolution. Thus, the locomotory style of an animal may shape how spatial information is learned and prioritized. An alternative hypothesis relates the preference for vertical information to the ability to sense hydrostatic pressure, a prominent cue unique to this dimension. Cuttlefish are mostly benthic animals, but they can move freely in a volume. Therefore, they present an optimal model to examine these hypotheses. We tested whether cuttlefish could separately recall the vertical and horizontal components of a learned two-dimensional target, and whether they have a preference for vertical or horizontal information. Sepia officinalis cuttlefish were trained to select one of two visual cues set along a 45 deg diagonal. The animals were then tested with the two visual cues arranged in a horizontal, vertical or opposite 45 deg configuration. We found that cuttlefish use vertical and horizontal spatial cues separately, and that they prefer vertical information to horizontal information. We propose that, as in fish, the availability of hydrostatic pressure, combined with the ecological value of vertical movements, determines the importance of vertical information.

3.
Front Physiol ; 7: 671, 2016.
Article in English | MEDLINE | ID: mdl-28144221

ABSTRACT

Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

4.
J Exp Biol ; 218(Pt 21): 3391-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26385328

ABSTRACT

A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move.


Subject(s)
Behavior, Animal , Sepia/physiology , Adaptation, Physiological , Animals , Color , Movement , Skin Pigmentation
5.
Anim Cogn ; 17(6): 1393-400, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24942108

ABSTRACT

Studies concerning the perceptual processes of animals are not only interesting, but are fundamental to the understanding of other developments in information processing among non-humans. Carefully used visual illusions have been proven to be an informative tool for understanding visual perception. In this behavioral study, we demonstrate that cuttlefish are responsive to visual cues involving texture gradients. Specifically, 12 out of 14 animals avoided swimming over a solid surface with a gradient picture that to humans resembles an illusionary crevasse, while only 5 out of 14 avoided a non-illusionary texture. Since texture gradients are well-known cues for depth perception in vertebrates, we suggest that these cephalopods were responding to the depth illusion created by the texture density gradient. Density gradients and relative densities are key features in distance perception in vertebrates. Our results suggest that they are fundamental features of vision in general, appearing also in cephalopods.


Subject(s)
Depth Perception , Sepia/physiology , Animals , Optical Illusions , Photic Stimulation
6.
PLoS One ; 7(5): e37579, 2012.
Article in English | MEDLINE | ID: mdl-22649542

ABSTRACT

Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to "blend in." To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer.


Subject(s)
Adaptation, Physiological/physiology , Environment , Image Processing, Computer-Assisted/methods , Octopodiformes/physiology , Pigmentation/physiology , Algorithms , Animals , Israel , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...