Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257443

ABSTRACT

The aim of this work is to create a new type of gravimeter that can function effectively in the challenging conditions of space, specifically on the surfaces of planets and moons. The proposed device, called a diamagnetically stabilized magnetically levitated gravimeter (DSMLG), uses magnetic forces to balance a test mass against the force of gravity, allowing for accurate measurements. A diamagnetically stabilized levitation structure comprises a floating magnet, diamagnetic material, and a lifting magnet. The floating magnet levitates between two diamagnetic plates without the need for external energy input due to the interaction between the magnetic forces of the floating magnet and the stabilizing force of the diamagnetic material. This structure allows for stable levitation of the floating magnet without requiring additional energy. The goal is to design a gravimeter that is lightweight, requires minimal power, can withstand extreme temperatures and shocks, and has a low data rate. The authors envision this gravimeter being used on various robotic spacecraft, such as landers and rovers, to study the interiors of rocky and icy celestial bodies. This paper reports on the results of a finite element model analysis of the DSMLG and the strength of the resulting diamagnetic spring. The findings contribute to the understanding of the levitation characteristics of diamagnetically stabilized structures and provide valuable insights for their practical applications, including in the development of the proposed DSMLG.

2.
Am J Transplant ; 23(4): 512-519, 2023 04.
Article in English | MEDLINE | ID: mdl-36732087

ABSTRACT

ABO compatibility is important for kidney transplantation, with longer waitlist times for blood group B kidney transplant candidates. However, kidneys from non-A1 (eg, A2) subtype donors, which express less A antigen, can be safely transplanted into group B recipients. ABO subtyping is routinely performed using anti-A1 lectin, but DNA-based genotyping is also possible. Here, we compare lectin and genotyping testing. Lectin and genotype subtyping was performed on 554 group A deceased donor samples at 2 transplant laboratories. The findings were supported by 2 additional data sets of 210 group A living kidney donors and 124 samples with unclear lectin testing sent to a reference laboratory. In deceased donors, genotyping found 65% more A2 donors than lectin testing, most with weak lectin reactivity, a finding supported in living donors and samples sent for reference testing. DNA sequencing and flow cytometry showed that the discordances were because of several factors, including transfusion, small variability in A antigen levels, and rare ABO∗A2.06 and ABO∗A2.16 sequences. Although lectin testing is the current standard for transplantation subtyping, genotyping is accurate and could increase A2 kidney transplant opportunities for group B candidates, a difference that should reduce group B wait times and improve transplant equity.


Subject(s)
Kidney Transplantation , Humans , Genotype , Blood Group Incompatibility , Tissue Donors , Living Donors , ABO Blood-Group System/genetics , Isoantibodies
3.
Transfusion ; 59(3): 908-915, 2019 03.
Article in English | MEDLINE | ID: mdl-30592300

ABSTRACT

BACKGROUND: Although P1 and Xga are known to be associated with the A4GALT and XG genes, respectively, the genetic basis of antigen expression has been elusive. Recent reports link both P1 and Xga expression with nucleotide changes in the promotor regions and with antigen-negative phenotypes due to disruption of transcription factor binding. STUDY DESIGN AND METHODS: Whole genome sequencing was performed on 113 individuals as part of the MedSeq Project with serologic RBC antigen typing for P1 (n = 77) and Xga (n = 15). Genomic data were analyzed by two approaches, nucleotide frequency correlation and serologic correlation, to find A4GALT and XG changes associated with P1 and Xga expression. RESULTS: For P1, the frequency approach identified 29 possible associated nucleotide changes, and the serologic approach revealed four among them correlating with the P1+/P1- phenotype: chr22:43,115,523_43,115,520AAAG/delAAAG (rs66781836); chr 22:43,114,551C/T (rs8138197); chr22:43,114,020 T/G (rs2143918); and chr22:43,113,793G/T (rs5751348). For Xga , the frequency approach identified 82 possible associated nucleotide changes, and among these the serologic approach revealed one correlating with the Xg(a+)/Xg(a-) phenotype: chrX:2,666,384G/C (rs311103). CONCLUSION: A bioinformatics analysis pipeline was created to identify genetic changes responsible for RBC antigen expression. This study, in progress before the recently published reports, independently confirms the basis for P1 and Xga . Although this enabled molecular typing of these antigens, the Y chromosome PAR1 region interfered with Xga typing in males. This approach could be used to identify and confirm the genetic basis of antigens, potentially replacing the historical approach using family pedigrees as genomic sequencing becomes commonplace.


Subject(s)
Blood Group Antigens/genetics , Whole Genome Sequencing/methods , Alleles , Computational Biology/methods , Galactosyltransferases/genetics , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...