Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(13): 11296-11325, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38949964

ABSTRACT

Decreased activity and expression of the G-protein coupled receptor GPR88 is linked to many behavior-linked neurological disorders. Published preclinical GPR88 allosteric agonists all have in vivo pharmacokinetic properties that preclude their progression to the clinic, including high lipophilicity and poor brain penetration. Here, we describe our attempts to improve GPR88 agonists' drug-like properties and our analysis of the trade-offs required to successfully target GPR88's allosteric pocket. We discovered two new GPR88 agonists: One that reduced morphine-induced locomotor activity in a murine proof-of-concept study, and the atropoisomeric BI-9508, which is a brain penetrant and has improved pharmacokinetic properties and dosing that recommend it for future in vivo studies in rodents. BI-9508 still suffers from high lipophilicity, and research on this series was halted. Because of its utility as a tool compound, we now offer researchers access to BI-9508 and a negative control free of charge via Boehringer Ingelheim's open innovation portal opnMe.com.


Subject(s)
Brain , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Mice , Brain/metabolism , Brain/drug effects , Humans , Drug Discovery , Male , Structure-Activity Relationship , Mice, Inbred C57BL , Morphine/pharmacology , Morphine/pharmacokinetics
2.
ACS Med Chem Lett ; 10(5): 754-760, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31097995

ABSTRACT

Positive allosteric modulators (PAMs) of α7 nAChRs can have different properties with respect to their effects on channel kinetics. Type I PAMs amplify peak channel response to acetylcholine but do not appear to influence channel desensitization kinetics, whereas Type II PAMs both increase channel response and delay receptor desensitization. Both Type I and Type II PAMs are reported in literature, but there are limited reports describing their structure-kinetic profile relationships. Here, we report a novel class of compounds with either Type I or Type II behavior that can be tuned by the relative stereochemistry around the central cyclopropyl ring: for example, (R,R)-13 (BNC375) and its analogues with RR stereochemistry around the central cyclopropyl ring are Type I PAMs, whereas compounds in the same series with SS stereochemistry (e.g., (S,S)-13) are Type II PAMs as measured using patch-clamp electrophysiology. Further fine control over the kinetics has been achieved by changing the substitutions on the aniline ring: generally the substitution of aniline with strong electron withdrawing groups reduces the Type II character of these compounds. Our structure-activity optimization efforts have led to the discovery of BNC375, a small molecule with good CNS-drug like properties and clinical candidate potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...