Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 25(12): i45-53, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19478015

ABSTRACT

MOTIVATION: Classification of gene and protein sequences into homologous families, i.e. sets of sequences that share common ancestry, is an essential step in comparative genomic analyses. This is typically achieved by construction of a sequence homology network, followed by clustering to identify dense subgraphs corresponding to families. Accurate classification of single domain families is now within reach due to major algorithmic advances in remote homology detection and graph clustering. However, classification of multidomain families remains a significant challenge. The presence of the same domain in sequences that do not share common ancestry introduces false edges in the homology network that link unrelated families and stymy clustering algorithms. RESULTS: Here, we investigate a network-rewiring strategy designed to eliminate edges due to promiscuous domains. We show that this strategy can reduce noise in and restore structure to artificial networks with simulated noise, as well as to the yeast genome homology network. We further evaluate this approach on a hand-curated set of multidomain sequences in mouse and human, and demonstrate that classification using the rewired network delivers dramatic improvement in Precision and Recall, compared with current methods. Families in our test set exhibit a broad range of domain architectures and sequence conservation, demonstrating that our method is flexible, robust and suitable for high-throughput, automated processing of heterogeneous, genome-scale data.


Subject(s)
Computational Biology/methods , Proteins/classification , Sequence Analysis, Protein/methods , Sequence Homology, Amino Acid , Animals , Conserved Sequence , Databases, Protein , Genome , Humans , Mice , Proteins/chemistry , Proteins/genetics
2.
PLoS Comput Biol ; 4(4): e1000063, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18475320

ABSTRACT

We address the problem of homology identification in complex multidomain families with varied domain architectures. The challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1) an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either focus on the homology of individual domains or consider only families with identical domain architectures, we show that homology can be rationally defined for multidomain families with diverse architectures by considering the genomic context of the genes that encode them. Our study demonstrates the utility of mining network structure for evolutionary information, suggesting this is a fertile approach for investigating evolutionary processes in the post-genomic era.


Subject(s)
Phylogeny , Proteins/chemistry , Proteins/genetics , Sequence Homology, Amino Acid , Amino Acid Sequence , Conserved Sequence , Family , Female , Genomics , Humans , Male , Receptors, Platelet-Derived Growth Factor/chemistry , Receptors, Platelet-Derived Growth Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...