Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer J ; 10(6): 65, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483120

ABSTRACT

Redirecting T cells to specifically kill malignant cells has been validated as an effective anti-cancer strategy in the clinic with the approval of blinatumomab for acute lymphoblastic leukemia. However, the immunosuppressive nature of the tumor microenvironment potentially poses a significant hurdle to T cell therapies. In hematological malignancies, the bone marrow (BM) niche is protective to leukemic stem cells and has minimized the efficacy of several anti-cancer drugs. In this study, we investigated the impact of the BM microenvironment on T cell redirection. Using bispecific antibodies targeting specific tumor antigens (CD123 and BCMA) and CD3, we observed that co-culture of acute myeloid leukemia or multiple myeloma cells with BM stromal cells protected tumor cells from bispecific antibody-T cell-mediated lysis in vitro and in vivo. Impaired CD3 redirection cytotoxicity was correlated with reduced T cell effector responses and cell-cell contact with stromal cells was implicated in reducing T cell activation and conferring protection of cancer cells. Finally, blocking the VLA4 adhesion pathway in combination with CD3 redirection reduced the stromal-mediated inhibition of cytotoxicity and T cell activation. Our results lend support to inhibiting VLA4 interactions along with administering CD3 redirection therapeutics as a novel combinatorial regimen for robust anti-cancer responses.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Bone Marrow/drug effects , CD3 Complex/immunology , Integrin alpha4beta1/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Multiple Myeloma/drug therapy , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , B-Cell Maturation Antigen/antagonists & inhibitors , B-Cell Maturation Antigen/immunology , Bone Marrow/immunology , Bone Marrow/pathology , CD3 Complex/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Integrin alpha4beta1/immunology , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/drug effects
2.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32150609

ABSTRACT

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , C2 Domains , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Macaca fascicularis , Sialic Acid Binding Ig-like Lectin 3/genetics , T-Lymphocytes/metabolism
3.
Blood ; 135(15): 1232-1243, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32040549

ABSTRACT

T-cell-mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein-coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Multiple Myeloma/therapy , Receptors, G-Protein-Coupled/immunology , T-Lymphocytes/drug effects , Animals , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Female , Humans , Immunotherapy , Mice, Inbred BALB C , Multiple Myeloma/immunology , T-Lymphocytes/immunology
4.
Nat Commun ; 10(1): 3753, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434895

ABSTRACT

Semen is the vehicle for virion dissemination in the female reproductive tract (FRT) in male-to-female HIV transmission. Recent data suggests that higher frequency semen exposure is associated with activation of anti-HIV mechanisms in HIV negative sex workers. Here, we use a non-human primate (NHP) model to show that repeated vaginal exposure to semen significantly reduces subsequent infection by repeated low-dose vaginal SIVmac251 challenge. Repeated semen exposures result in lower CCR5 expression in circulating CD4+ T-cells, as well as higher expression of Mx1 (in correlation with IFNε expression) and FoxP3 in the cervicovaginal mucosa, and increased infiltration of CD4+ T-cells. Establishing in vivo evidence of competing effects of semen on transmission impacts our basic understanding of what factors may determine HIV infectivity in humans. Our results clearly indicate that repeated semen exposure can profoundly modulate the FRT microenvironment, paradoxically promoting host resistance against HIV acquisition.


Subject(s)
Cervix Uteri/immunology , Mucous Membrane/immunology , Semen/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/immunology , Vagina/immunology , Animals , CD4-Positive T-Lymphocytes , Cervix Uteri/virology , Cytokines/metabolism , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , HIV Infections/immunology , HIV Infections/transmission , Humans , Macaca mulatta , Mucous Membrane/metabolism , Myxovirus Resistance Proteins/metabolism , Receptors, CCR5/metabolism , Vagina/virology
5.
AIDS ; 32(13): 1763-1772, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30045057

ABSTRACT

OBJECTIVE: The impact of short-term analytical treatment interruptions (ATI) on the levels of cellular HIV and of residual activation after subsequent antiretroviral therapy (ART)-mediated plasma HIV viral load re-suppression remains under active investigation. DESIGN: Peripheral blood mononuclear cells (PBMC) from 23 ART-suppressed, chronically HIV-1-infected patients were evaluated at the initiation of an ATI, during ATI, and following plasma re-suppression of HIV with ART. METHODS: T-cell activation was measured by flow cytometry. Total cellular HIV DNA, and episomal 2-long terminal repeat (2-LTR) circles were measured by droplet digital PCR (ddPCR). Cellular HIV multiply spliced RNA (tat/rev), unspliced (gag), and poly(A) tailed transcripts [poly(A)] were measured by reverse transcriptase-ddPCR. Analyses were performed using R version 2.5.1 or JMP Pro 11. RESULTS: ATI (median ATI duration, 4 weeks) resulted in a rise of plasma HIV RNA (median = 72900 copies/ml), decrease in CD4+ T cells/µl (median = 511.5 cells/µl; P = 0.0001), increase in T-cell activation, and increase in cellular HIV DNA and RNA. Mean fluorescence intensity of CD38 on CD4+HLA-DR+ T cells at baseline was positively associated with total HIV DNA levels during ATI (pol: P = 0.03, Rho = 0.44). Upon ART resumption, plasma HIV re-suppression occurred after a median of 13 weeks and resulted in restoration of pre-ATI CD4+ T cells/µl, T-cell activation, and levels of cellular HIV DNA and RNA. CONCLUSION: Monitored viremia and immune activation during an ATI in ART-suppressed chronic HIV-infected patients does not change the amount of persistent cellular HIV RNA or total HIV DNA after ART-mediated re-suppression.


Subject(s)
Anti-Retroviral Agents/administration & dosage , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/isolation & purification , Viral Load , Withholding Treatment , Adult , Female , Flow Cytometry , Humans , Leukocytes, Mononuclear/virology , Male , Middle Aged , Plasma/virology , Young Adult
6.
Oncoimmunology ; 5(5): e1128612, 2016 May.
Article in English | MEDLINE | ID: mdl-27467943

ABSTRACT

Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV(+) women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4(+) T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4(+), CD68(+), and CD11c(+) cells, and only in stroma for CD8(+) cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes.

7.
J Leukoc Biol ; 100(1): 223-31, 2016 07.
Article in English | MEDLINE | ID: mdl-26609048

ABSTRACT

Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14(++)CD16(+) intermediate monocytes (P < 0.0001), surface CD163 (P = 0.0004), CD169 (P < 0.0001), tetherin (P = 0.0153), and soluble CD163 (P < 0.0001). A change in CD38(+), HLA-DR(+) CD8 T cells was associated with changes in CD169 and tetherin expression. Maraviroc did not affect biomarkers of monocyte/macrophage activation but resulted in greater percentages of CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease.


Subject(s)
Antiretroviral Therapy, Highly Active , Cyclohexanes/pharmacology , HIV Infections/immunology , HIV-1/immunology , Monocytes/immunology , Triazoles/pharmacology , Viral Load/immunology , Adult , Biomarkers/metabolism , CCR5 Receptor Antagonists/pharmacology , CD4 Lymphocyte Count , Female , HIV Infections/drug therapy , HIV Infections/metabolism , HIV Infections/virology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Lymphocyte Activation , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Male , Maraviroc , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Monocytes/virology , Viral Load/drug effects
8.
Immunology ; 145(3): 380-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25684333

ABSTRACT

The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+)  CD4(-)  perforin(+)  IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2)  = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+)  CD4(-)  CSFE(lo)  CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies.


Subject(s)
Dendritic Cells/immunology , HIV Infections/immunology , HIV-1/immunology , Protein Precursors/immunology , T-Lymphocytes/immunology , Viral Load/immunology , Adult , Aged , Anti-HIV Agents/therapeutic use , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Dendritic Cells/drug effects , HIV Infections/blood , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Interferon-gamma/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Middle Aged , Perforin/immunology , Retrospective Studies , T-Lymphocytes/drug effects , T-Lymphocytes/virology , Time Factors , Treatment Outcome , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...