Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38856773

ABSTRACT

The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.

2.
Int J Radiat Biol ; 100(5): 678-688, 2024.
Article in English | MEDLINE | ID: mdl-38451191

ABSTRACT

PURPOSE: To provide an updated summary of recent advances in the application of gamma irradiation to elicit secondary metabolism and for induction of mutations in plant cell and organ cultures for the production of industrially important specialized metabolites (SMs). CONCLUSIONS: Research on the application of gamma radiation with plants has contributed a lot to microbial decontamination of seeds, and the promotion of physiological processes such as seed germination, seedling vigor, plant growth, and development. Various studies have demonstrated the influence of gamma rays on the morphology, physiology, and biochemistry of plants. Recent research efforts have also shown that low-dose gamma (5-100 Gy) irradiation can be utilized as an expedient solution to alleviate the deleterious effect of abiotic stresses and to obtain better yields of plants. Inducing mutagenesis using gamma irradiation has also evolved as a better option for inducing genetic variability in crops, vegetables, medicinal and ornamentals for their genetic improvement. Plant SMs are gaining increasing importance as pharmaceutical, therapeutic, cosmetic, and agricultural products. Plant cell, tissue, and organ cultures represent an attractive alternative to conventional methods of procuring useful SMs. Among the varied approaches the elicitor-induced in vitro culture techniques are considered an efficient tool for studying and improving the production of SMs. This review focuses on the utilization of low-dose gamma irradiation in the production of high-value SMs such as phenolics, terpenoids, and alkaloids. Furthermore, we present varied successful examples of gamma-ray-induced mutations in the production of SMs.


Subject(s)
Gamma Rays , Plant Cells , Secondary Metabolism , Secondary Metabolism/radiation effects , Plant Cells/metabolism , Plant Cells/radiation effects
3.
Physiol Mol Biol Plants ; 29(8): 1153-1177, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37829704

ABSTRACT

Secondary metabolites from plants are ubiquitous and have applications in medicines, food additives, scents, colorants, and natural pesticides. Biotechnological production of secondary metabolites that have economic benefits is an attractive alternative to conventional methods. Cell, adventitious, and hairy root suspension cultures are typically used to produce secondary metabolites. According to recent studies, somatic embryos in suspension culture are useful tools for the generation of secondary metabolites. Somatic embryogenesis is a mode of regeneration in several plant species. This review provides an update on the use of somatic embryogenesis in the production of valuable secondary metabolites. The factors influencing the generation of secondary metabolites using somatic embryos in suspension cultures, elicitation methods, and prospective applications are also discussed in this review.

4.
Crit Rev Biotechnol ; : 1-23, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500186

ABSTRACT

In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.

5.
Front Plant Sci ; 14: 1159588, 2023.
Article in English | MEDLINE | ID: mdl-37152119

ABSTRACT

Plant micropropagation has been adapted in the fields of agriculture, horticulture, forestry, and other related fields for large-scale production of elite plants. The use of liquid media and adoption of bioreactors have escalated the production of healthy plants. Several liquid-phase, gas-phase, temporary immersion, and other modified bioreactors have been used for plant propagation. The design, principle, operational mode, merits, and demerits of various bioreactors used for the regeneration of propagules, such as bulblets, cormlets, rhizomes, microtubers, shoots (subsequent rooting), and somatic embryos, are discussed here. In addition, various parameters that affect plant regeneration are discussed with suitable examples.

6.
Appl Microbiol Biotechnol ; 107(7-8): 2061-2071, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36847855

ABSTRACT

Since ancient times, Morinda species, particularly Morinda citrifolia, have been used for their therapeutic benefits. Iridoids, anthraquinones, coumarins, flavonoids, lignans, phytosterols, and carotenoids are examples of natural substances with bioactivity. Anthraquinone derivatives are the most significant of these chemicals since they are utilized as natural coloring agents and have a wide range of medicinal functions. Utilizing cell and organ cultures of Morinda species, various biotechnological methods have been developed for the bioproduction of anthraquinone derivatives. The generation of anthraquinone derivatives in cell and organ cultures is summarized in this article. The methods used to produce these chemicals in bioreactor cultures have also been examined. KEY POINTS: • This review investigates the potential of cell and organ cultures for anthraquinone synthesis. • The overproduction of anthraquinones has been addressed using a variety of techniques. • The use of bioreactor technologies for anthraquinone manufacturing is highlighted.


Subject(s)
Lignans , Morinda , Organ Culture Techniques , Morinda/chemistry , Anthraquinones/chemistry , Plant Extracts/chemistry
7.
Plants (Basel) ; 13(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38202425

ABSTRACT

Anthocyanins are water-soluble pigments found in plants. They exist in various colors, including red, purple, and blue, and are utilized as natural colorants in the food and cosmetics industries. The pharmaceutical industry uses anthocyanins as therapeutic compounds because they have several medicinal qualities, including anti-obesity, anti-cancer, antidiabetic, neuroprotective, and cardioprotective effects. Anthocyanins are conventionally procured from colored fruits and vegetables and are utilized in the food, pharmaceutical, and cosmetic industries. However, the composition and concentration of anthocyanins from natural sources vary quantitively and qualitatively; therefore, plant cell and organ cultures have been explored for many decades to understand the production of these valuable compounds. A great deal of research has been carried out on plant cell cultures using varied methods, such as the selection of suitable cell lines, medium optimization, optimization culture conditions, precursor feeding, and elicitation for the production of anthocyanin pigments. In addition, metabolic engineering technologies have been applied for the hyperaccumulation of these compounds in varied plants, including tobacco and arabidopsis. In this review, we describe various strategies applied in plant cell and organ cultures for the production of anthocyanins.

8.
Metabolites ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36676964

ABSTRACT

The Rubia genus includes major groups of medicinal plants such as Rubia cordifolia, Rubia tinctorum, and Rubia akane. They contain anthraquinones (AQs), particularly alizarin and purpurin, which have pharmacological effects that are anti-inflammatory, antioxidant, anticancer, hemostatic, antibacterial, and more. Alizarin and purpurin have been utilized as natural dyes for cotton, silk, and wool fabrics since the dawn of time. These substances have been used in the cosmetics and food industries to color products. The amount of AQs in different Rubia species is minimal. In order to produce these compounds, researchers have established cell and organ cultures. Investigations have been conducted into numerous chemical and physical parameters that affect the biomass and accumulation of secondary metabolites in a cell, callus, hairy root, and adventitious root suspension cultures. This article offers numerous techniques and approaches used to produce biomass and secondary metabolites from the Rubia species. Additionally, it has been emphasized that cells can be grown in bioreactor cultures to produce AQs.

9.
J Parasit Dis ; 41(3): 666-670, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28848256

ABSTRACT

The present study revealed that the latex of Garcinia morella (Gaertn.) possessed 204.27 mg/g phenolic acid and 124.92 mg/g of flavonoid content along with other phytochemicals. Gas chromatography-mass spectrometry (GC-MS) revealed the presence of 20 compounds in the latex, with the major compounds identified as 5-Oxohexanenitrile (18.7%), phenol, 2,4-bis(1,1-dimethylethyl)- (24.64%) and Hexadecanoic acid (22.85%). The latex showed toxicity against treated third instar larvae of Culex quinquefasciatus with LC50 and LC90 values of 132.54 and 483.15 ppm. The latex also showed significant antioxidant activities with EC50 values of 205.5 µg/ml in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 95.53 µg/ml in phosphomolybdate, 308.1 µg/ml in hydrogen peroxide (H2O2) scavenging assays.

10.
J Diet Suppl ; 14(6): 691-696, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28426266

ABSTRACT

The proximate composition of seeds, physicochemical characteristics, and fatty acid profiles of Ziziphus oenoplia seed oil were determined in this study. The seeds possessed low moisture (4.54%) and high carbohydrate (42.96%) and protein content (40%), making the seed oil suitable for storage and consumption. The saponification value (197.80) of the seed oil makes it a promising source for the soap and shampoo industry. The iodine and saponification values are comparable to those of major edible seed oils such as groundnut and soybean. The high amount of monounsaturated fatty acids (53.41%), especially oleic acid (53.38%), present in the oil makes it a better source for a low-fat diet and may reduce the risk of various heart-related diseases.


Subject(s)
Plant Oils/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry , Ziziphus/chemistry , Fatty Acids/analysis , Oleic Acid/analysis , Rice Bran Oil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...