Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8812, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627569

ABSTRACT

Because of their propensity to build micellar nanostructures, amphiphilic block copolymers (ABCs) are an appropriate and unique toughening agent for epoxy systems individually on their own and in grafted form. The presence of epoxiphilic and phobic ends in ABCs is responsible for the self-assembly and the micellar structure. Nanofiller-grafted ABCs can effectively enhance the toughness of epoxy via the synergistic interaction of nanofillers and the ABCs. Even though there is sound literature supporting the effect of ABCs in epoxy, the action of double hydrophilic block copolymers (DHBC) in the epoxy matrix is less handled. Hence, the grafting of nanofillers in DHBCs and their subsequent role in tuning the properties of epoxy is a new concept. Hence this paper tries to bridge the gap via studying the effect of grafted fillers based on DHBCs in epoxy matrix. As a result, the current study focuses on the synthesis of double hydrophilic graphene nanoplatelets (rGO-g-DHBC) via nitrogen oxide-mediated polymerization for epoxy toughening application. The prepared rGO-g-DHBC was effectively utilized for epoxy toughening applications, resulting in a 457% improvement in toughness without compromising its inherent tensile strength. The mechanism behind the improved toughness was elucidated with the help of a scanning electron microscope, and the thermal, and rheological characteristics were studied.

2.
Int J Biol Macromol ; 263(Pt 1): 130341, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387637

ABSTRACT

Boron Nitride (h-BN) possesses unique qualities like increased thermal conductivity, non-toxic nature, and environmental friendliness; hence, it is a good reinforcing agent for chlorobutyl rubber (CIIR). Tannic acid (TA) holds excellent bio-functional properties and is considered as an exceptional bio-exfoliating agent. Hence, in this study, we have utilized the bio-exfoliating ability of TA to exfoliate h-BN and evaluate its efficiency in reinforcing the CIIR matrix. Results demonstrate the exceptional role of tannic acid in imparting multifunctionality to chlorobutyl rubber. CIIR matrix introduced with h-BN:TA (h-BN:TA/CIIR) display excellent mechanical performance due to the reinforcing effect shown by excess TA in addition to the exfoliating effect. In addition, h-BN:TA/CIIR composite exhibited superior antimicrobial activity against S. aureus. The retention of thermal decontamination efficiency of the composites with increase in the number of cycles ensures their promising application in the field of reusable gloves and chemical protective clothing. The exfoliated filler created a tortuous path inside the matrix which prevents the permeation of solvent. Hence the work intends to synergize the hydrophobic nature of h-BN, exfoliating capacity of TA and the barrier abilities of CIIR for the adsorption of oil from oil-water mixture and portrays the future of the trio in water purification.


Subject(s)
Boron Compounds , Nanocomposites , Polyphenols , Rubber , Staphylococcus aureus , Protective Clothing , Anti-Bacterial Agents/pharmacology , Water
3.
Int J Biol Macromol ; 225: 351-360, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427617

ABSTRACT

Natural rubber is the only biosynthesized rubber and the most prominent of all the elastomers. Insertion of nanofillers into natural rubber matrix has received much research interest because of the enhanced mechanical, thermal, electrical, antibacterial, etc. properties of the final natural rubber nanocomposite. Molybdenum disulfide (MoS2), an important member in transition metal dichalcogenides (TMD) is having excellent optical, thermal, mechanical, electronic and antibacterial properties. The inherent properties of this novel filler was exploited through the preparation of natural rubber-MoS2 nanocomposites via latex dipping method in which tannic acid (TA), naturally occurring macromolecule was used as an exfoliating agent for MoS2. MoS2:TA dispersions were prepared in 1:2, 1:4 and 1:6 ratios by mechanical stirring followed by sonication method for analyzing the optimum amount of exfoliating agent for the preparation of NR-MoS2 nanocomposite. MoS2:TA in 1:4 ratio was found to be the optimum loading for the NR nanocomposite preparation with improved mechanical, thermal and antibacterial properties. The enhanced properties of the NR composites could be attributed to the synergistic effect of both MoS2 and TA. The current study shows the role of TA in tuning the properties of NR/MoS2 nanocomposites that enable their potential utilization in various biomedical applications.


Subject(s)
Anti-Infective Agents , Nanocomposites , Rubber , Molybdenum , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Tannins
4.
J Control Release ; 348: 158-185, 2022 08.
Article in English | MEDLINE | ID: mdl-35662576

ABSTRACT

Bacterial infections are yet another serious threat to human health. Misuse or overuse of conventional antibiotics has led to the arrival of various super resistant bacteria along with many serious side effects to human body. In this exigent circumstance, the use of nanomaterial based antibacterial agents is one of the most appropriate solutions to fight against bacteria thereby causing an inhibition to bacterial proliferation. Recent studies show that, due to the large surface area, high biocompatibility, strong near-infrared (NIR) absorption and low cytotoxicity, molybdenum disulphide (MoS2), an extraordinary member in the transition metal dichalcogenides (TMDs) is extensively explored in the obliteration of many drug resistant bacteria, photothermal therapy and drug delivery. MoS2 based nanomaterials can effectively prevent bacterial growth through many mechanisms. Through this review, we have tried to provide an inclusive knowledge on the recent progress of antibacterial studies in MoS2 based nanomaterials including MoS2 nanosheets, nanoflowers, quantum dot (QD), hybrid nanocomposites and polymer nanocomposites. Moreover, toxicity of MoS2 based nanomaterials is described at the end of the review.


Subject(s)
Molybdenum , Nanocomposites , Anti-Bacterial Agents/pharmacology , Disulfides , Drug Delivery Systems , Humans , Molybdenum/pharmacology , Polymers
5.
J Colloid Interface Sci ; 617: 730-744, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35316786

ABSTRACT

We report a novel synthesis route for preparing carbon quantum dots (CQDs) of customized surface functionality from readily available precursors. The synthetic strategy is based on the chemical modification of paper precursors prior to preparing CQDs from them. The pre-synthesis modification of paper precursors with (3-Aminopropyl) triethoxy silane (APTES) enabled us to synthesize CQDs with amine functional groups on the surface. The silane coupling via condensation between the ethoxy group of APTES and the cellulose hydroxyl group on the paper resulted in the tethering of amine groups on the paper substrates, which are retained as surface-bound species during the synthesis of CQDs from the modified paper. Amine functionalization on the surface of CQDs helped us use them in applications such as DNA binding. We analyzed the interaction of CQDs with calf thymus DNA (CT-DNA), and the results imply their propensity as an efficient biological probe. The synthetic strategy presented here can also be extended to other functional groups.


Subject(s)
Quantum Dots , Amines , Carbon , DNA , Silanes
6.
Int J Biol Macromol ; 194: 819-842, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34838576

ABSTRACT

Natural rubber (NR) is an eminent sustainable material and is the only agricultural product among various rubbers. Use of nanofillers in NR matrix as a reinforcing agent has gained huge attention because they offer excellent matrix-filler interaction upon forming a good dispersion in the NR matrix. Nanoscale dispersion of fillers lead to greater interfacial interactions between NR and fillers compared to microfillers, which in turn lead to a conspicuous reinforcing effect. Addition of various nanofillers into NR matrix improves not only the mechanical properties but also the electrical, thermal and antimicrobial properties to an extreme level. The current review describes the reinforcing ability of various nanofillers such as clay, graphene, carbon nanotube (CNT), titanium dioxide (TiO2), chitin, cellulose, barium titanate (BaTiO3) and lignin in NR matrix. Moreover, reinforcement of various hybrid nanofillers in NR is also discussed in a comprehensive manner. The review also includes the historical trajectory of rubber nanocomposites and a comprehensive account on the factors affecting the properties of the NR nanocomposites.


Subject(s)
Nanocomposites/analysis , Nanocomposites/chemistry , Rubber/analysis , Rubber/chemistry , Biopolymers/analysis , Biopolymers/chemistry , Chemical Phenomena , Spectrum Analysis
7.
Materials (Basel) ; 13(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532132

ABSTRACT

In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases-O2 and CO2-by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition-it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas-the permeation of CO2 was higher than O2; (iii) the nanoclay loading-it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117390, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31336324

ABSTRACT

A quinoline functionalized pillar[5]arene, QPA has been prepared and its interaction with biologically relevant ions and molecules in aqueous solution has been demonstrated. The sensor molecule, QPA has shown selectivity towards Fe3+ among eleven metal ions studied. The Fe3+ complex of QPA (FeQPA) selectively interacts with F- among halides by ∼4 fold fluorescence enhancement. Further, FeQPA has shown selectivity towards arginine and lysine among twenty naturally occurring amino acids. The binding of QPA with Fe3+ has been confirmed by MALDI-TOF and 1H NMR titrations.


Subject(s)
Amino Acids, Basic/analysis , Calixarenes/chemistry , Fluorides/analysis , Iron/analysis , Quinolines/chemistry , Iron/chemistry , Limit of Detection , Spectrometry, Fluorescence , Water/chemistry
9.
ACS Omega ; 4(10): 14169-14178, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31508538

ABSTRACT

This study deals with the synthesis of a gliadin-stabilized gold quantum cluster (AuQC) for the encapsulation of curcumin (CUR) and its targeted delivery to the cancer cell. CUR is an anticancer drug containing a hydrophobic polyphenol derived from the rhizome of Curcuma longa. The utilization of CUR in cancer treatment is limited because of suboptimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve the bioavailability of CUR, we have encapsulated it into AuQCs stabilized by a proline-rich protein gliadin because proline-rich protein has the ability to bind a hydrophobic drug CUR. The encapsulation of CUR into the hydrophobic cavity of the protein was confirmed by various spectroscopic techniques. Compared to CUR alone, the encapsulated CUR was stable against degradation and showed higher pH stability up to pH 8.5. The encapsulation efficiency of CUR in AuQCs was calculated as 98%, which was much higher than the other reported methods. In vitro drug release experiment exhibited a controlled and pH-dependent CUR release over a period of 60 h. The encapsulated CUR-QCs exhibited less toxicity in the normal cell line (L929) and high toxicity in breast cancer (MDA-MB239). Thus, it can be used as a potential material for anticancer therapy and bioimaging.

10.
Analyst ; 143(16): 3841-3849, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29999047

ABSTRACT

Fluorescent copper quantum clusters (CuQCs) have received great interest in recent times due to their attractive features, such as water solubility, low cost, wide availability of Cu and good biocompatibility. Recently, considerable efforts have been devoted to the preparation and applications of CuQCs. Herein, we report a simple one-pot green method for the preparation of fluorescent CuQCs using a plant-derived protein, gluten, as a stabilizing agent. Gluten, a naturally abundant, low-cost and sustainable plant-protein derived from wheat, was employed both as a reducing and stabilizing agent to produce blue emitting CuQCs. The CuQCs were characterized by UV-Vis absorption, fluorescence, FT-IR, TEM, and XPS. We further incorporated CuQCs into a polymer to study the release rate of Cu2+ ions from a CuQC-polymer composite, since copper ions are well known for their fungicidal properties and contraceptive action in copper-T (CuT). The CuQCs were incorporated into a model polymer, polyurethane (PU), by melt compounding, and the mixtures were extruded in the form of a wire. It was observed that the CuQCs were uniformly dispersed within the polymer matrix. An in vitro experiment was carried out to quantify the potential release of Cu(ii) ions for contraceptive applications. The developed nanocomposite releases Cu(ii) ions for 90 days, which suggests the potential application of the CuQCs in the medical field like the development of short-term intrauterine devices (IUDs). Compared to conventional IUDs, here the CuQC-PU nanocomposite reduces the burst release of the Cu2+, and the release rates can be tuned by changing the composition of the materials. These results suggest that the CuQC-PU nanocomposites have great potential to replace current commercial intrauterine devices.


Subject(s)
Copper/chemistry , Green Chemistry Technology , Intrauterine Devices, Copper , Nanocomposites , Female , Humans , Polymers
11.
ACS Appl Mater Interfaces ; 9(2): 1167-1172, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28001027

ABSTRACT

Tuning the microstructure, conductance, band gap of a single molecule with an external stimuli such as light have vital importance in nanoscale molecular electronics. Azobenzene systems are inimitable light responsive molecules suitable for the development of optically modulated materials. In this work we have demonstrated the development of an optically active Multiwalled Carbon Nanotube (MWCNT)-hybrid material by the noncovalent functionalization of azo based chromophore derived from cardanol, a bioresource material. This photoresponsive noncovalent hybrid shows trans-cis photoisomerization induced switching of conductance. We report this as the first example in which the photochromic assembly developed from a bioresource material exhibited tunable conductivity. We expect that this novel photoswitchable hybrid with reversible conductance may have potential applications in nanoscale molecular electronics, solar cells, OLEDs, etc.


Subject(s)
Nanotubes, Carbon , Nanotechnology
12.
Biosens Bioelectron ; 81: 68-74, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-26921554

ABSTRACT

We have developed a highly selective sensitive fluorescent detection of acetylcholine (ACh) using bovine serum albumin (BSA) protected atomically precise clusters of gold. The gold quantum clusters (AuQC@BSA) synthesized using bovine serum albumin and conjugated with acetylcholinesterase (AChE), an enzyme specific for acetylcholine, resulting in AuQC@BSA-AChE. The enzyme, AChE hydrolyzes acetylcholine (ACh) to choline (Ch) which in turn interacts with AuQC@BSA-AChE and quenches its fluorescence, enabling sensing. We have carried out the real time monitoring of the hydrolysis of ACh using electrospray ionization mass spectrometry (ESI MS) to find out the mechanism of fluorescent quenching. The validity of present method for determination of concentration of acetylcholine in real system such as blood was demonstrated. Further, the sensor, AuQC@BSA-AChE can be easily coated on paper and an efficient and cheap sensor can be developed and detection limit for ACh is found to be 10nM. The fluorescent intensity of AuQC@BSA-AChE is sensitive towards acetylcholine in range of 10nM to 6.4µM. This suggests that AuQC@BSA-AChE has an excellent potential to be used for diagnosis of various neuropsychological and neuropsychiatric disorders.


Subject(s)
Acetylcholine/blood , Acetylcholinesterase/chemistry , Enzymes, Immobilized/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Acetylcholine/analysis , Animals , Biosensing Techniques/methods , Cattle , Choline/chemistry , Fluorescence , Humans , Limit of Detection , Spectrometry, Fluorescence/methods
13.
Biosens Bioelectron ; 60: 191-4, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24811192

ABSTRACT

Colloidal gold is extensively used for molecular sensing because of the wide flexibilities it offers in terms of modifications of the gold nanoparticles (GNPs) surface with a variety of functional groups. We describe a simple, enzyme free assay for the detection of cholesterol, and demonstrate its applicability by estimating cholesterol in human serum samples. To enable cholesterol detection, we functionalized GNPs with tomatine, a glycoalkaloid found in the leaves and stem of tomato plants. The binding of cholesterol onto tomatine functionalized gold nanoparticles (TGNPs) was characterized by a blue shift in the plasmon absorption spectra (SPR) followed by reduction in the particle size. The TGNPs have been core etched with increasing concentration of cholesterol and with 800 ng/mL of cholesterol particles in the size range of 10-12 nm have been obtained. This behavior was attributed to the enhanced hydrophobicity of the surface acquired by cholesterol binding resulting in the folding or shrinkage of molecule in turn leading to core etching. The method was successfully applied for the detection of cholesterol in real samples and agrees well with values obtained from the conventional method. Because of its significant plasmonic shift and simplicity, this biosensor could be used for cholesterol detection as it does not demand either any hazardous and costly chemicals or any complex synthetic routes.


Subject(s)
Cholesterol/blood , Cholesterol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Imprinting/methods , Surface Plasmon Resonance/instrumentation , Tomatine/chemistry , Biosensing Techniques/instrumentation , Enzymes/chemistry , Equipment Design , Equipment Failure Analysis , Humans , Metal Nanoparticles/ultrastructure , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
14.
Biosens Bioelectron ; 54: 171-4, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24270468

ABSTRACT

A simple and low cost colorimetric method, requiring no instrumentation, is presented for the detection of fructose in human semen, a marker of seminal vesicle function. In this study we have synthesized a novel gold nanoparticle (AuNP) based sensor, named as fructose blue, by co-functionalizing AuNPs with 3-aminophenyl boronic acid (APB) and L-glutamic acid-(2,2,2)-trichloroethyl ester (GTE). The red-shift in the plasmon absorption spectra of fructose blue with different fructose concentrations accompanied by colour change of the solution from red to blue is the principle applied here for the estimation of fructose. The novel co-functionalized nanoparticles (NPs) have better colour change response for fructose than that of the earlier reported fructose sensors based on AuNPs functionalized by the APB moiety alone. The proposed method showed linearity in the range of 0.5-6 mg/mL with a detection limit of 0.3 mg/mL, and exhibits excellent selectivity for fructose over a collection of sugars. The method was successfully applied for detection of fructose in real samples of semen and agrees well with values obtained from conventional methods. The method depicted here for the detection of semen fructose is indeed superior to the existing methods in the sense that it can be performed at home as a preliminary self-screening test by patients suspecting infertility for warranting further medical attention and provides privacy also. Moreover the method is important, particularly in third world countries where high-tech diagnostic aids are inaccessible to the bulk of the population.


Subject(s)
Fructose/analysis , Gold/chemistry , Infertility/diagnosis , Nanoparticles/chemistry , Semen/chemistry , Biosensing Techniques/methods , Colorimetry/methods , Humans , Limit of Detection , Male
15.
J Phys Chem B ; 112(47): 14793-803, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18973377

ABSTRACT

The volume shrinkage during polymerization of a thermoplastic modified epoxy resin undergoing a simultaneous viscoelastic phase separation was investigated for the first time by means of pressure-volume-temperature (PVT) analysis. Varying amounts (0-20%) of poly(styrene-co-acrylonitrile) (SAN) have been incorporated into a high-temperature epoxy-diamine system, diglycidyl ether of bisphenol A (DGEBA)-4,4'-diaminodiphenyl sulfone (DDS) mixture, and subsequently polymerized isothermally at a constant pressure of 10 MPa. Volume shrinkage is highest for the double-phased network-like bicontinuous morphology in the SAN-15% system. Investigation of the epoxy reaction kinetics based on the conversions derived from PVT data established a phase-separation effect on the volume shrinkage behavior in these blends. From subsequent thermal transition studies of various epoxy-DDS/SAN systems, it has been suggested that the behavior of the highly intermixed thermoplastic SAN-rich phase is the key for in situ shrinkage control. Various microscopic characterizations including scanning electron microscopy, atomic force microscopy, and optical microscopy are combined to confirm that the shrinkage behavior is manipulated by a volume shrinkage of the thermoplastic SAN-rich phase undergoing a viscoelastic phase separation during cure. Consequently, a new mechanism for volume shrinkage has been visualized for the in situ polymerization of a thermoplastic-modified epoxy resin.

SELECTION OF CITATIONS
SEARCH DETAIL
...