Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Emerg Med ; 31(11): 1598-600, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24041637

ABSTRACT

INTRODUCTION: Knee effusions occur due to traumatic and atraumatic causes. Clinical diagnosis currently relies on several provocative techniques to demonstrate knee joint effusions. Portable bedside ultrasonography (US) is becoming an adjunct to diagnosis of effusions. We hypothesized that a US approach with a clinical joint cupping maneuver increases sensitivity in identifying effusions as compared to US alone. METHODS: Using unembalmed cadaver knees, we injected fluid to create effusions up to 10 mL. Each effusion volume was measured in a lateral transverse location with respect to the patella. For each effusion we applied a joint cupping maneuver from an inferior approach, and re-measured the effusion. RESULTS: With increased volume of saline infusion, the mean depth of effusion on ultrasound imaging increased as well. Using a 2-mm cutoff, we visualized an effusion without the joint cupping maneuver at 2.5 mL and with the joint cupping technique at 1 mL. Mean effusion diameter increased on average 0.26 cm for the joint cupping maneuver as compared to without the maneuver. The effusion depth was statistically different at 2.5 and 7.5 mL (P < .05). CONCLUSIONS: Utilizing a joint cupping technique in combination with US is a valuable tool in assessing knee effusions, especially those of subclinical levels. Effusion measurements are complicated by uneven distribution of effusion fluid. A clinical joint cupping maneuver concentrates the fluid in one recess of the joint, increasing the likelihood of fluid detection using US.


Subject(s)
Exudates and Transudates/diagnostic imaging , Knee Joint/diagnostic imaging , Cadaver , Humans , Injections, Intra-Articular , Point-of-Care Systems , Ultrasonography
2.
J Parasitol ; 93(6): 1392-402, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18314686

ABSTRACT

The lined sea anemone Edwardsiella lineata has evolved a derived parasitic life history that includes a novel body plan adapted for life inside its ctenophore hosts. Reputedly its sole host is the sea walnut, Mnemiopsis leidyi, a voracious planktivore and a seasonally abundant member of many pelagic ecosystems. However, we have observed substantially higher E. lineata prevalence in a second ctenophore species, the ctenophore predator Beroë ovata. The interplay among these 3 species has important conservation consequences as M. leidyi introductions are thought to be responsible for the severe depletion of numerous commercial fisheries in the Mediterranean basin, and both E. lineata and B. ovata have been proposed as biological controls for invasive M. leidyi. Over a 3-yr period (2004-2006), we collected 8,253 ctenophores from Woods Hole, Massachusetts, including M. leidyi, B. ovata, and a third ctenophore, Pleurobrachia pileus, and we recorded E. lineata infection frequencies, parasite load, and parasite location. We also conducted laboratory experiments to determine the likely mechanisms for parasite introduction and the effect of each host on parasite development. We observed peak E. lineata infection frequencies of 0% in P. pileus, 59% in M. leidyi, and 100% in B. ovata, suggesting that B. ovata could be an important natural host for E. lineata. However, in laboratory experiments, E. lineata larvae proved far more successful at infecting M. leidyi than B. ovata, and E. lineata parasites excised from M. leidyi exhibited greater developmental competence than parasites excised from B. ovata. Although we show that E. lineata is efficiently transferred from M. leidyi to B. ovata when the latter preys upon the former, we conclude that E. lineata larvae are not well adapted for parasitizing the latter species and that the E. lineata parasite is not well adapted for feeding in B. ovata; these developmental and ecological factors underlie the host specificity of this recently evolved parasite.


Subject(s)
Ctenophora/parasitology , Sea Anemones/physiology , Animals , Ctenophora/anatomy & histology , Feeding Behavior/physiology , Host-Parasite Interactions , Pest Control, Biological/methods , Sea Anemones/anatomy & histology , Sea Anemones/growth & development , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...