Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Eng Sci ; 38(5): 298-309, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34079203

ABSTRACT

Biochar adsorbent can be produced in low-resource settings using local materials and simple pyrolysis technology, and it has shown promise for uptake of micropollutants (MPs) such as pesticides, pharmaceuticals, industrial compounds, and chemicals released from consumer goods present in water at ng/L to µg/L levels. Accordingly, the use of biochar in water treatment applications where granular activated carbon (GAC) is economically or logistically infeasible is gaining interest. Monitoring treatment systems for individual MPs require laboratory analytical techniques that are typically cost-prohibitive and impractical for low-resource settings. Therefore, identification of surrogate parameters(s) for adsorbent bed life that can be measured inexpensively and in the field is a high priority. Background dissolved organic matter (DOM) is ubiquitous in natural and anthropogenic waters at concentrations typically 1,000 to 100,000 that of MPs. Some constituents of DOM foul the adsorbent and reduce bed life for removal of target contaminants. Aromatic DOM foulants absorb ultraviolet light at a wavelength of 254 nm (UVA254). Because DOM fouling directly affects MP adsorption capacity and DOM is a bulk water parameter that can be quantified using relatively inexpensive and portable instruments, it could be exploited as a surrogate for monitoring biochar adsorber bed life under field conditions. The objective of this study was to quantify removal of MPs from waters containing different types and concentrations of background DOM (surface water, wastewater, dump leachate) and thus exhibiting different UVA254 breakthrough profiles in bench-scale column experiments. Breakthrough profiles of weakly to moderately adsorbing MPs, including herbicides, pharmaceuticals and personal care products, and perfluoroalkyl acids, were collected using biochars generated under different pyrolysis conditions and a commercial GAC as a performance benchmark. Optimal conditions for biochar water treatment include using biochar produced from wood at ≥850°C under slightly aerobic conditions, empty bed contact times of ≥30 min, and upstream treatment processes to reduce DOM. Relative UVA254 breakthrough (C/C 0) up to 0.6-0.9 corresponded to ≥90% MP removal for most MP-water combinations studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...