Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Pigment Cell Melanoma Res ; 34(1): 136-143, 2021 01.
Article in English | MEDLINE | ID: mdl-32567790

ABSTRACT

Melanoma is a disease associated with a very high mutation burden and thus the possibility of a diverse range of oncogenic mechanisms that allow it to evade therapeutic interventions and the immune system. Here, we describe the characterization of a panel of 102 cell lines from metastatic melanomas (the NZM lines), including using whole-exome and RNA sequencing to analyse genetic variants and gene expression changes in a subset of this panel. Lines possessing all major melanoma genotypes were identified, and hierarchical clustering of gene expression profiles revealed four broad subgroups of cell lines. Immunogenotyping identified a range of HLA haplotypes as well as expression of neoantigens and cancer-testis antigens in the lines. Together, these characteristics make the NZM panel a valuable resource for cell-based, immunological and xenograft studies to better understand the diversity of melanoma biology and the responses of melanoma to therapeutic interventions.


Subject(s)
Biomarkers, Tumor/genetics , Exome , Gene Expression Regulation, Neoplastic , Genomics/methods , Melanoma/genetics , Models, Biological , Mutation , Humans , Melanoma/secondary , Signal Transduction , Transcriptome , Tumor Cells, Cultured , Exome Sequencing
2.
Front Oncol ; 8: 425, 2018.
Article in English | MEDLINE | ID: mdl-30370249

ABSTRACT

Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.

4.
Front Oncol ; 7: 184, 2017.
Article in English | MEDLINE | ID: mdl-28929082

ABSTRACT

INTRODUCTION: Endocrine therapy of breast cancer, which either deprives cancer tissue of estrogen or prevents estrogen pathway signaling, is the most common treatment after surgery and radiotherapy. We have previously shown for the estrogen-responsive MCF-7 cell line that exposure to tamoxifen, or deprivation of estrogen, leads initially to inhibition of cell proliferation, followed after several months by the emergence of resistant sub-lines that are phenotypically different from the parental line. We examined the early responses of MCF-7 cells following either exposure to 4-hydroxytamoxifen or deprivation of estrogen for periods of 2 days-4 weeks. METHODS: Endocrine-sensitive or -resistant breast cancer cell lines were used to examine the expression of the stem cell gene SOX2, and the Wnt effector genes AXIN2 and DKK1 using quantitative PCR analysis. Breast cancer cell lines were used to assess the anti-proliferative effects (as determined by IC50 values) of Wnt pathway inhibitors LGK974 and IWP-2. RESULTS: Hormone therapy led to time-dependent increases of up to 10-fold in SOX2 expression, up to threefold in expression of the Wnt target genes AXIN2 and DKK1, and variable changes in NANOG and OCT4 expression. The cells also showed increased mammosphere formation and increased CD24 surface protein expression. Some but not all hormone-resistant MCF-7 sub-lines, emerging after long-term hormonal stress, showed up to 50-fold increases in SOX2 expression and smaller increases in AXIN2 and DKK1 expression. However, the increase in Wnt target gene expression was not accompanied by an increase in sensitivity to Wnt pathway inhibitors LGK974 and IWP-2. A general trend of lower IC50 values was observed in 3-dimensional spheroid culture conditions (which allowed enrichment of cells with cancer stem cell phenotype) relative to monolayer cultures. The endocrine-resistant cell lines showed no significant increase in sensitivity to Wnt inhibitors. CONCLUSION: Hormone treatment of cultured MCF-7 cells leads within 2 days to increased expression of components of the SOX2 and Wnt pathways and to increased potential for mammosphere formation. We suggest that these responses are indicative of early adaptation to endocrine stress with features of stem cell character and that this facilitates the survival of emerging hormone-resistant cell populations.

5.
Int J Mol Sci ; 18(7)2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28653984

ABSTRACT

The long non-coding RNA ANRIL, antisense to the CDKN2B locus, is transcribed from a gene that encompasses multiple disease-associated polymorphisms. Despite the identification of multiple isoforms of ANRIL, expression of certain transcripts has been found to be tissue-specific and the characterisation of ANRIL transcripts remains incomplete. Several functions have been associated with ANRIL. In our judgement, studies on ANRIL functionality are premature pending a more complete appreciation of the profusion of isoforms. We found differential expression of ANRIL exons, which indicates that multiple isoforms exist in melanoma cells. In addition to linear isoforms, we identified circular forms of ANRIL (circANRIL). Further characterisation of circANRIL in two patient-derived metastatic melanoma cell lines (NZM7 and NZM37) revealed the existence of a rich assortment of circular isoforms. Moreover, in the two melanoma cell lines investigated, the complements of circANRIL isoforms were almost completely different. Novel exons were also discovered. We also found the family of linear ANRIL was enriched in the nucleus, whilst the circular isoforms were enriched in the cytoplasm and they differed markedly in stability. With respect to the variable processing of circANRIL species, bioinformatic analysis indicated that intronic Arthrobacter luteus (Alu) restriction endonuclease inverted repeats and exon skipping were not involved in selection of back-spliced exon junctions. Based on our findings, we hypothesise that "ANRIL" has wholly distinct dual sets of functions in melanoma. This reveals the dynamic nature of the locus and constitutes a basis for investigating the functions of ANRIL in melanoma.


Subject(s)
Melanoma/genetics , RNA Isoforms/genetics , RNA, Long Noncoding/genetics , Skin Neoplasms/genetics , Cell Line, Tumor , Exons , Gene Expression Regulation, Neoplastic , Humans , Nucleic Acid Conformation , RNA Isoforms/analysis , RNA Splicing , RNA, Long Noncoding/analysis
6.
Cell Calcium ; 60(6): 384-395, 2016 12.
Article in English | MEDLINE | ID: mdl-27659111

ABSTRACT

GRIN2A mutations are frequent in melanoma tumours but their role in disease is not well understood. GRIN2A encodes a modulatory subunit of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that certain GRIN2A mutations increase NMDAR function and support melanoma growth through oncogenic effects. This hypothesis was tested using 19 low-passage melanoma cell lines, four of which carried novel missense mutations in GRIN2A that we previously reported. We examined NMDAR expression, function of a calcium ion (Ca2+) channel and its contribution to cell growth using pharmacological modulators; findings were correlated with the presence or absence of GRIN2A mutations. We found that NMDAR expression was low in all melanoma cell lines, independent of GRIN2A mutations. In keeping with this, NMDAR-mediated Ca2+ influx and its contribution to cell proliferation were weak in most cell lines. However, certain GRIN2A mutations and culture media with lower glutamate levels enhanced NMDAR effects on cell growth and invasion. The main finding was that G762E was associated with higher glutamate-mediated Ca2+ influx and stronger NMDAR contribution to cell proliferation, compared with wild-type GRIN2A and other GRIN2A mutations. The pro-invasive phenotype of mutated cell lines was increased in culture medium containing less glutamate, implying environmental modulation of mutation effects. In conclusion, NMDAR ion channel function is low in cultured melanoma cells but supports cell proliferation and invasion. Selected GRIN2A mutations, such as G762E, are associated with oncogenic consequences that can be modulated by extracellular glutamate. Primary cultures may be better suited to determine the role of the NMDAR in melanoma in vivo.


Subject(s)
Glutamic Acid/pharmacology , Melanoma/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Calcium/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Melanoma/pathology , Mutation , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
7.
PeerJ ; 4: e1835, 2016.
Article in English | MEDLINE | ID: mdl-27018161

ABSTRACT

The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly). Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP) and phosphorylation of extracellular signal-regulated kinase (ERK), in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R), were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking-several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence) and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine). This A108N mutant did cause an increase in surface receptor expression (which may argue for reduced constitutive activity), but no ligand-mediated effects were detected. Two glioblastoma multiforme cell lines (which endogenously express GPR18) were assayed for NAGly-induced pERK phosphorylation, with negative results. Despite a lack of ligand-mediated responses in all assays, the constitutive trafficking of GPR18 remains an interesting facet of receptor function and will have consequences for understanding the role of GPR18 in physiology.

8.
Front Oncol ; 4: 221, 2014.
Article in English | MEDLINE | ID: mdl-25232533

ABSTRACT

The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume, and resistance to mTOR inhibition. Here, we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel, and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

9.
Cancer Chemother Pharmacol ; 74(1): 25-35, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24801172

ABSTRACT

PURPOSE: SN 28049 is a new DNA-binding topoisomerase II poison identified by its curative activity against the murine colon 38 carcinoma. Previous studies showed activity to be associated with selective drug accumulation and retention in tumour tissue. Retention varied widely among different tumours and was related to antitumour activity. We determined whether differences in the uptake and retention of SN 28049 could be observed in vitro. METHODS: The Co38P and LLTC lines were derived from the murine colon 38 carcinoma and Lewis lung carcinoma (3LL), respectively. The NZM4, NZM10 and NZM52 human melanoma lines, as well as the CCRF/CEM, CEM/VLB100 and CEM/E1000 human leukaemia lines were also utilised. Cell-associated drug was measured by liquid chromatography-mass spectrometry, laser-scanning confocal microscopy and fluorescence microscopy. Data for SN 28049 were compared for four SN 28049 analogues, for the structurally related drug N-[2-(dimethylamino)-ethyl]acridine-4-carboxamide (DACA) and for doxorubicin. RESULTS: Cellular uptake of SN 28049 was rapid and associated with increased fluorescence in cytoplasmic vesicles or bodies. SN 28049 uptake after an incubation time of 1 h varied widely with different cell lines (2-98 pmol/106 cells) and did not correlate with growth inhibitory concentrations (IC50 values), which also varied widely (1.2-19 nM). Changes in the length of the N-linked side chain of SN 28049 had large effects on drug uptake by Co38P cells. SN 28049 uptake by CCRF/CEM cells was only slightly affected by the expression of P-glycoprotein (CEM/VLB100) or MRP1 protein (CEM/E1000). As measured by cytoplasmic fluorescence, SN 28049 was taken up rapidly and retained strongly by Co38P cells, DACA was taken up rapidly and retained poorly, and doxorubicin was taken up slowly and retained moderately. CONCLUSIONS: The results suggest that SN 28049 is actively transported into cytoplasmic vesicles. While vesicle-associated drug is not important for intrinsic cytotoxicity, it may play a key role as a "slow release" form that modifies pharmacokinetics in multicellular structures such as tumours.


Subject(s)
Antineoplastic Agents/metabolism , Carcinoma/metabolism , Drugs, Investigational/metabolism , Leukemia/metabolism , Melanoma/metabolism , Naphthyridines/metabolism , Topoisomerase II Inhibitors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Transport, Active , Carcinoma/drug therapy , Carcinoma/ultrastructure , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoplasmic Vesicles/drug effects , Cytoplasmic Vesicles/metabolism , Cytoplasmic Vesicles/ultrastructure , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacology , Humans , Kinetics , Leukemia/drug therapy , Leukemia/pathology , Melanoma/drug therapy , Melanoma/ultrastructure , Mice , Multidrug Resistance-Associated Proteins/metabolism , Naphthyridines/chemistry , Naphthyridines/pharmacology , Neoplasm Proteins/metabolism , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
10.
Front Oncol ; 3: 333, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24455489

ABSTRACT

Previous whole-exome sequencing has demonstrated that melanoma tumors harbor mutations in the GRIN2A gene. GRIN2A encodes the regulatory GluN2A subunit of the glutamate-gated N-methyl-d-aspartate receptor (NMDAR), involvement of which in melanoma remains undefined. Here, we sequenced coding exons of GRIN2A in 19 low-passage melanoma cell lines derived from patients with metastatic melanoma. Potential mutation impact was evaluated in silico, including within the GluN2A crystal structure, and clinical correlations were sought. We found that of 19 metastatic melanoma tumors, four (21%) carried five missense mutations in the evolutionarily conserved domains of GRIN2A; two were previously reported. Melanoma cells that carried these mutations were treatment-naïve. Sorting intolerant from tolerant analysis predicted that S349F, G762E, and P1132L would disrupt protein function. When modeled into the crystal structure of GluN2A, G762E was seen to potentially alter GluN1-GluN2A interactions and ligand binding, implying disruption to NMDAR functionality. Patients whose tumors carried non-synonymous GRIN2A mutations had faster disease progression and shorter overall survival (P < 0.05). This was in contrast to the BRAF V600E mutation, found in 58% of tumors but showing no correlation with clinical outcome (P = 0.963). Although numbers of patients in this study are small, and firm conclusions about the association between GRIN2A mutations and poor clinical outcome cannot be drawn, our results highlight the high prevalence of GRIN2A mutations in metastatic melanoma and suggest for the first time that mutated NMDARs impact melanoma progression.

11.
Cancer Chemother Pharmacol ; 72(5): 1013-22, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24036845

ABSTRACT

PURPOSE: A variety of anticancer drugs, including doxorubicin and mitoxantrone, have structures in which a DNA-intercalating chromophore is linked to a positively charged side chain. These drugs generally inhibit tumour growth and survival by poisoning the enzyme DNA topoisomerase II. SN 28049, a benzonaphthyridine derivative with these properties, has curative activity against the Colon 38 tumour in mice. Previous pharmacokinetic studies have demonstrated tumour-selective retention with approximately 20-fold higher area under the concentration-time curve (AUC) for tumour tissue as compared to normal tissues. We have investigated here whether such retention is tumour specific. METHODS: Plasma and tissue pharmacokinetics were assessed in the murine Lewis lung (LL3) tumour in C57 BL/6 mice and in xenografts of the NZM4, NZM10 and NZM52 human melanoma lines in Balb/c Rag-1 immunodeficient mice. The in vitro cellular localisation of SN 28049 in murine and human cell lines was studied by confocal fluorescence microscopy. RESULTS: A 260-fold variation, from 8.9 µM h (NZM4) to 2,334 µM h (Colon 38), was found among the different tumours. Only small variations were observed in the corresponding plasma AUC (2.9-5 µM h). Moreover, in vivo activity, as measured by tumour growth delay, varied from 1 day (NZM4) to curative (Colon 38), consistent with the tumour pharmacokinetic data. In cultured cell lines, SN 28049 was found in cytoplasmic bodies, suggesting that drug sequestration could contribute to tumour pharmacokinetics. CONCLUSION: SN 28049 shows dramatic differences in both tumour AUC and antitumour activity against different tumours. These differences point to the presence of a tumour-specific uptake and retention mechanism.


Subject(s)
Carcinoma, Lewis Lung/metabolism , Colonic Neoplasms/metabolism , Drugs, Investigational/pharmacokinetics , Melanoma/metabolism , Naphthyridines/pharmacokinetics , Topoisomerase II Inhibitors/pharmacokinetics , Animals , Biological Transport , Carcinoma, Lewis Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Cytoplasmic Structures/drug effects , Cytoplasmic Structures/metabolism , Cytoplasmic Structures/pathology , Drugs, Investigational/metabolism , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , Female , Genes, RAG-1 , Humans , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Naphthyridines/metabolism , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , Tissue Distribution , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
12.
Front Genet ; 4: 66, 2013.
Article in English | MEDLINE | ID: mdl-23658559

ABSTRACT

The NRAS and BRAF genes are frequently mutated in melanoma, suggesting that the NRAS-BRAF-MEK-ERK signaling pathway is an important target for therapy. Two classes of drugs, one targeting activated BRAF and one targeting MEK, are currently undergoing clinical evaluation. We have analysed the NRAS and BRAF mutational status of a series of 44 early passage lines developed from New Zealand patients with metastatic melanoma. 41% of the lines analysed had BRAF mutations, 23% had NRAS mutations, and 36% had neither. We then determined IC50 values (drug concentrations for 50% growth inhibition) for CI-1040, a commonly used inhibitor of MEK kinase; trametinib, a clinical agent targeting MEK kinase; and vemurafenib, an inhibitor of mutant BRAF kinase. Cell lines with activating BRAF mutations were significantly more sensitive to vemurafenib than lines with NRAS mutations or lines lacking either mutation (p < 0.001). IC50 values for CI-1040 and trametinib were strongly correlated (r = 0.98) with trametinib showing ~100-fold greater potency. Cell lines sensitive to vemurafenib were also sensitive to CI-1040 and trametinib, but there was no relationship between IC50 values and NRAS mutation status. A small number of lines lacking a BRAF mutation were sensitive to CI-1040 but resistant to vemurafenib. We used western blotting to investigate the effect on ERK phosphorylation of CI-1040 in four lines, of vemurafenib in two lines and of trametinib in two lines. The results support the view that MEK inhibitors might be combined with BRAF inhibitors in the treatment of melanomas with activated BRAF. The high sensitivity to trametinib of some lines with wildtype BRAF status also suggests that MEK inhibitors could have a therapeutic effect against some melanomas as single agents.

13.
BMC Cancer ; 12: 141, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22475322

ABSTRACT

BACKGROUND: The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. METHODS: Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. RESULTS: Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. CONCLUSION: Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation.


Subject(s)
Melanocytes/metabolism , Melanoma/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Blotting, Western , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Genes, ras/genetics , Humans , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics
14.
Invest New Drugs ; 30(5): 2035-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21912889

ABSTRACT

PURPOSE: The human tumour suppressor protein p53 is mutated in nearly half of human tumours and most mutant proteins have single amino acid changes. Several drugs including the quinazoline derivative 1 (CP-31398) have been reported to restore p53 activity in mutant cells. The side chain of 1 contains a styryl linkage that compromises its stability and we wished to explore the activity of analogues containing more stable side chains. METHODS: Reactivation of p53 function was measured by flow cytometry as the ability to potentiate radiation-induced G(1)-phase cell cycle arrest and by western blotting to determine expression of p21(WAF1). DNA binding was measured by competition with ethidium and preliminary pharmacological and xenograft studies were carried out. RESULTS: Screening of analogues for potentiation of radiation-induced G(1)-phase cell cycle arrest using NZOV11, an ovarian tumour cell line containing a p53(R248Q) mutation, demonstrated that the (2-benzofuranyl)-quinazoline derivative 5 was among the most active of the analogues. Compound 5 showed similar effects in several other p53 mutant human tumour cell lines but not in a p53 null cell line. 5 also potentiated p21(WAF1) expression induced by radiation. DNA binding affinity was measured and found to correlate with p53 reactivation activity. Plasma concentrations of 5 in mice were sufficient to suggest in vivo activity and a small induced tumour growth delay (7 days) of NZM4 melanoma xenografts was observed. CONCLUSION: Compound 5 restores p53-like function to a human tumour cells lines expressing a variety of mutant p53 proteins, thus providing a basis for the design of further new drugs.


Subject(s)
Mutation/drug effects , Quinazolines/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism
15.
Invest New Drugs ; 30(6): 2103-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22105790

ABSTRACT

Breast cancer is commonly treated with anti-estrogens or aromatase inhibitors, but resistant disease eventually develops and new therapies for such resistance are of great interest. We have previously isolated several tamoxifen-resistant variant sub-lines of the MCF-7 breast cancer cell line and provided evidence that they arose from expansion of pre-existing minor populations. We have searched for therapeutic agents that exhibit selective growth inhibition of the resistant lines and here investigate 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91). We found that two of the tamoxifen-resistant sub-lines (TamR3 and TamC3) unexpectedly showed increased sensitivity to RL90 and RL91. We utilized growth inhibition assays, flow cytometry and immunoblotting to establish a mechanistic basis for their action. Treated sensitive cells showed S-phase selective DNA damage, as detected by histone H2AX phosphorylation. Cellular responses were similar to those induced by the topoisomerase I poison camptothecin. Although IC(50) values of camptothecin, RL90, RL91 were correlated, studies with purified mammalian topoisomerase I suggested that RL90 and RL91 differed from camptothecin by acting as catalytic topoisomerase I inhibitors. These drugs provide a platform for the further development of DNA damaging drugs that have selective effects on tamoxifen resistant breast cancer cells. The results also raise the question of whether clinical topoisomerase I poisons such as irinotecan and topotecan might be active in the treatment of some types of tamoxifen-resistant cancer.


Subject(s)
Cyclohexanones/pharmacology , Drug Resistance, Neoplasm , Topoisomerase I Inhibitors/pharmacology , Catalysis , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Estrogen Antagonists , Humans , Tamoxifen
16.
PLoS One ; 4(12): e8461, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20041153

ABSTRACT

BACKGROUND: We are investigating the molecular basis of melanoma by defining genomic characteristics that correlate with tumour phenotype in a novel panel of metastatic melanoma cell lines. The aim of this study is to identify new prognostic markers and therapeutic targets that might aid clinical cancer diagnosis and management. PRINCIPAL FINDINGS: Global transcript profiling identified a signature featuring decreased expression of developmental and lineage specification genes including MITF, EDNRB, DCT, and TYR, and increased expression of genes involved in interaction with the extracellular environment, such as PLAUR, VCAN, and HIF1a. Migration assays showed that the gene signature correlated with the invasive potential of the cell lines, and external validation by using publicly available data indicated that tumours with the invasive gene signature were less melanocytic and may be more aggressive. The invasion signature could be detected in both primary and metastatic tumours suggesting that gene expression conferring increased invasive potential in melanoma may occur independently of tumour stage. CONCLUSIONS: Our data supports the hypothesis that differential developmental gene expression may drive invasive potential in metastatic melanoma, and that melanoma heterogeneity may be explained by the differing capacity of melanoma cells to both withstand decreased expression of lineage specification genes and to respond to the tumour microenvironment. The invasion signature may provide new possibilities for predicting which primary tumours are more likely to metastasize, and which metastatic tumours might show a more aggressive clinical course.


Subject(s)
Gene Expression Profiling , Melanoma/genetics , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Gene Dosage/genetics , Gene Expression Regulation, Neoplastic , Genes, Neoplasm/genetics , Genome, Human/genetics , Humans , Models, Genetic , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
17.
J Math Biol ; 49(4): 329-57, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15657794

ABSTRACT

Most anti-cancer drugs in use today exert their effects by inducing a programmed cell death mechanism. This process, termed apoptosis, is accompanied by degradation of the DNA and produces cells with a range of DNA contents. We have previously developed a phase transition mathematical model to describe the mammalian cell division cycle in terms of cell cycle phases and the transition rates between these phases. We now extend this model here to incorporate a transition to a programmed cell death phase whereby cellular DNA is progressively degraded with time. We have utilised the technique of flow cytometry to analyse the behaviour of a melanoma cell line (NZM13) that was exposed to paclitaxel, a drug used frequently in the treatment of cancer. The flow cytometry profiles included a complex mixture of living cells whose DNA content was increasing with time and dying cells whose DNA content was decreasing with time. Application of the mathematical model enabled estimation of the rate constant for entry of mitotic cells into apoptosis (0.035 per hour) and the duration of the period of DNA degradation (51 hours). These results provide a dynamic model of the action of an anticancer drug that can be extended to improve the clinical outcome in individual cancer patients.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Mathematics , Models, Biological , Paclitaxel/pharmacology , Cell Cycle , Cell Line, Tumor , DNA, Neoplasm/metabolism , Flow Cytometry , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology
18.
J Math Biol ; 47(4): 295-312, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14523574

ABSTRACT

The growth of human cancers is characterised by long and variable cell cycle times that are controlled by stochastic events prior to DNA replication and cell division. Treatment with radiotherapy or chemotherapy induces a complex chain of events involving reversible cell cycle arrest and cell death. In this paper we have developed a mathematical model that has the potential to describe the growth of human tumour cells and their responses to therapy. We have used the model to predict the response of cells to mitotic arrest, and have compared the results to experimental data using a human melanoma cell line exposed to the anticancer drug paclitaxel. Cells were analysed for DNA content at multiple time points by flow cytometry. An excellent correspondence was obtained between predicted and experimental data. We discuss possible extensions to the model to describe the behaviour of cell populations in vivo.


Subject(s)
Cell Cycle/physiology , Models, Biological , Algorithms , Antineoplastic Agents/pharmacology , Cell Count , Cell Cycle/drug effects , Cell Death/drug effects , Cell Death/physiology , Cell Division/drug effects , Cell Division/physiology , Cell Line, Tumor , Computer Simulation , DNA, Neoplasm/analysis , Eukaryotic Cells/chemistry , Eukaryotic Cells/drug effects , Flow Cytometry , G1 Phase/drug effects , G1 Phase/physiology , G2 Phase/drug effects , G2 Phase/physiology , Humans , Kinetics , Mitosis/drug effects , Mitosis/physiology , Paclitaxel/pharmacology , S Phase/drug effects , S Phase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...