Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Neuroimage ; 279: 120294, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37517572

ABSTRACT

Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain Mapping/methods , Artifacts
2.
Wellcome Open Res ; 6: 143, 2021.
Article in English | MEDLINE | ID: mdl-37008187

ABSTRACT

Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate human brain and behavioural function in both research and clinical interventions. The combination of functional magnetic resonance imaging (fMRI) with tDCS enables researchers to directly test causal contributions of stimulated brain regions, answering questions about the physiology and neural mechanisms underlying behaviour. Despite the promise of the technique, advances have been hampered by technical challenges and methodological variability between studies, confounding comparability/replicability. Methods: Here tDCS-fMRI at 3T was developed for a series of experiments investigating language recovery after stroke. To validate the method, one healthy volunteer completed an fMRI paradigm with three conditions: (i) No-tDCS, (ii) Sham-tDCS, (iii) 2mA Anodal-tDCS. MR data were analysed in SPM12 with region-of-interest (ROI) analyses of the two electrodes and reference sites. Results: Quality assessment indicated no visible signal dropouts or distortions introduced by the tDCS equipment. After modelling scanner drift, motion-related variance, and temporal autocorrelation, we found no field inhomogeneity in functional sensitivity metrics across conditions in grey matter and in the three ROIs. Discussion: Key safety factors and risk mitigation strategies that must be taken into consideration when integrating tDCS into an fMRI environment are outlined. To obtain reliable results, we provide practical solutions to technical challenges and complications of the method. It is hoped that sharing these data and SOP will promote methodological replication in future studies, enhancing the quality of tDCS-fMRI application, and improve the reliability of scientific results in this field. Conclusions: The method and data provided here provide a technically safe, reliable tDCS-fMRI procedure to obtain high quality MR data. The detailed framework of the Standard Operation Procedure SOP ( https://doi.org/10.5281/zenodo.4606564) systematically reports the technical and procedural elements of our tDCS-fMRI approach, which we hope can be adopted and prove useful in future studies.

3.
Brain Commun ; 2(1): fcaa049, 2020.
Article in English | MEDLINE | ID: mdl-32954301

ABSTRACT

Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington's disease by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of neurofeedback training in Huntington's disease by examining two different methods, activity and connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington's disease gene-carriers completed 16 runs of neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback training), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants' ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust.

4.
Neuroimage ; 189: 159-170, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30593904

ABSTRACT

Gradient echo echo-planar imaging (GE EPI) is used for most fMRI studies but can suffer substantially from image distortions and BOLD sensitivity (BS) loss due to susceptibility-induced magnetic field inhomogeneities. While there are various post-processing methods for correcting image distortions, signal dropouts cannot be recovered and therefore need to be addressed at the data acquisition stage. Common approaches for reducing susceptibility-related BS loss in selected brain areas are: z-shimming, inverting the phase encoding (PE) gradient polarity, optimizing the slice tilt and increasing spatial resolution. The optimization of these parameters can be based on atlases derived from multiple echo-planar imaging (EPI) acquisitions. However, this requires resource and time, which imposes a practical limitation on the range over which parameters can be optimised meaning that the chosen settings may still be sub-optimal. To address this issue, we have developed an automated method that can be used to optimize across a large parameter space. It is based on numerical signal simulations of the BS loss predicted by physical models informed by a large database of magnetic field (B0) maps acquired on a broad cohort of participants. The advantage of our simulation-based approach compared to previous methods is that it saves time and expensive measurements and allows for optimizing EPI protocols by incorporating a broad range of factors, including different resolutions, echo times or slice orientations. To verify the numerical optimisation, results are compared to those from an earlier study and to experimental BS measurements carried out in six healthy volunteers.


Subject(s)
Brain/diagnostic imaging , Echo-Planar Imaging/standards , Neuroimaging/standards , Adult , Echo-Planar Imaging/methods , Humans , Neuroimaging/methods , Reproducibility of Results
5.
Neuropsychologia ; 100: 51-63, 2017 06.
Article in English | MEDLINE | ID: mdl-28400328

ABSTRACT

Neuroimaging studies of speech perception have consistently indicated a left-hemisphere dominance in the temporal lobes' responses to intelligible auditory speech signals (McGettigan and Scott, 2012). However, there are important communicative cues that cannot be extracted from auditory signals alone, including the direction of the talker's gaze. Previous work has implicated the superior temporal cortices in processing gaze direction, with evidence for predominantly right-lateralized responses (Carlin & Calder, 2013). The aim of the current study was to investigate whether the lateralization of responses to talker gaze differs in an auditory communicative context. Participants in a functional MRI experiment watched and listened to videos of spoken sentences in which the auditory intelligibility and talker gaze direction were manipulated factorially. We observed a left-dominant temporal lobe sensitivity to the talker's gaze direction, in which the left anterior superior temporal sulcus/gyrus and temporal pole showed an enhanced response to direct gaze - further investigation revealed that this pattern of lateralization was modulated by auditory intelligibility. Our results suggest flexibility in the distribution of neural responses to social cues in the face within the context of a challenging speech perception task.


Subject(s)
Attention/physiology , Communication , Functional Laterality/physiology , Speech Perception/physiology , Speech/physiology , Temporal Lobe/physiology , Adolescent , Adult , Brain Mapping , Female , Fixation, Ocular/physiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Oxygen/blood , Temporal Lobe/diagnostic imaging , Young Adult
6.
Front Neurosci ; 11: 158, 2017.
Article in English | MEDLINE | ID: mdl-28424572

ABSTRACT

Accelerated data acquisition with simultaneous multi-slice (SMS) imaging for functional MRI studies leads to interacting and opposing effects that influence the sensitivity to blood oxygen level-dependent (BOLD) signal changes. Image signal to noise ratio (SNR) is decreased with higher SMS acceleration factors and shorter repetition times (TR) due to g-factor noise penalties and saturation of longitudinal magnetization. However, the lower image SNR is counteracted by greater statistical power from more samples per unit time and a higher temporal Nyquist frequency that allows for better removal of spurious non-BOLD high frequency signal content. This study investigated the dependence of the BOLD sensitivity on these main driving factors and their interaction, and provides a framework for evaluating optimal acceleration of SMS-EPI sequences. functional magnetic resonance imaging (fMRI) data from a scenes/objects visualization task was acquired in 10 healthy volunteers at a standard neuroscience resolution of 3 mm on a 3T MRI scanner. SMS factors 1, 2, 4, and 8 were used, spanning TRs of 2800 ms to 350 ms. Two data processing methods were used to equalize the number of samples over the SMS factors. BOLD sensitivity was assessed using g-factors maps, temporal SNR (tSNR), and t-score metrics. tSNR results show a dependence on SMS factor that is highly non-uniform over the brain, with outcomes driven by g-factor noise amplification and the presence of high frequency noise. The t-score metrics also show a high degree of spatial dependence: the lower g-factor noise area of V1 shows significant improvements at higher SMS factors; the moderate-level g-factor noise area of the parahippocampal place area shows only a trend of improvement; and the high g-factor noise area of the ventral-medial pre-frontal cortex shows a trend of declining t-scores at higher SMS factors. This spatial variability suggests that the optimal SMS factor for fMRI studies is region dependent. For task fMRI studies done with similar parameters as were used here (3T scanner, 32-channel RF head coil, whole brain coverage at 3 mm isotropic resolution), we recommend SMS accelerations of 4x (conservative) to 8x (aggressive) for most studies and a more conservative acceleration of 2x for studies interested in anterior midline regions.

7.
J Neurosci ; 36(17): 4669-80, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27122026

ABSTRACT

UNLABELLED: Synchronized behavior (chanting, singing, praying, dancing) is found in all human cultures and is central to religious, military, and political activities, which require people to act collaboratively and cohesively; however, we know little about the neural underpinnings of many kinds of synchronous behavior (e.g., vocal behavior) or its role in establishing and maintaining group cohesion. In the present study, we measured neural activity using fMRI while participants spoke simultaneously with another person. We manipulated whether the couple spoke the same sentence (allowing synchrony) or different sentences (preventing synchrony), and also whether the voice the participant heard was "live" (allowing rich reciprocal interaction) or prerecorded (with no such mutual influence). Synchronous speech was associated with increased activity in posterior and anterior auditory fields. When, and only when, participants spoke with a partner who was both synchronous and "live," we observed a lack of the suppression of auditory cortex, which is commonly seen as a neural correlate of speech production. Instead, auditory cortex responded as though it were processing another talker's speech. Our results suggest that detecting synchrony leads to a change in the perceptual consequences of one's own actions: they are processed as though they were other-, rather than self-produced. This may contribute to our understanding of synchronized behavior as a group-bonding tool. SIGNIFICANCE STATEMENT: Synchronized human behavior, such as chanting, dancing, and singing, are cultural universals with functional significance: these activities increase group cohesion and cause participants to like each other and behave more prosocially toward each other. Here we use fMRI brain imaging to investigate the neural basis of one common form of cohesive synchronized behavior: joint speaking (e.g., the synchronous speech seen in chants, prayers, pledges). Results showed that joint speech recruits additional right hemisphere regions outside the classic speech production network. Additionally, we found that a neural marker of self-produced speech, suppression of sensory cortices, did not occur during joint synchronized speech, suggesting that joint synchronized behavior may alter self-other distinctions in sensory processing.


Subject(s)
Brain/physiology , Social Perception , Speech Perception/physiology , Speech/physiology , Acoustic Stimulation/methods , Adult , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male
8.
Magn Reson Med ; 75(6): 2517-25, 2016 06.
Article in English | MEDLINE | ID: mdl-26193125

ABSTRACT

PURPOSE: Brief bursts of RF noise during MR data acquisition ("k-space spikes") cause disruptive image artifacts, manifesting as stripes overlaid on the image. RF noise is often related to hardware problems, including vibrations during gradient-heavy sequences, such as diffusion-weighted imaging. In this study, we present an application of the Robust Principal Component Analysis (RPCA) algorithm to remove spike noise from k-space. METHODS: Corrupted k-space matrices were decomposed into their low-rank and sparse components using the RPCA algorithm, such that spikes were contained within the sparse component and artifact-free k-space data remained in the low-rank component. Automated center refilling was applied to keep the peaked central cluster of k-space from misclassification in the sparse component. RESULTS: This algorithm was demonstrated to effectively remove k-space spikes from four data types under conditions generating spikes: (i) mouse heart T1 mapping, (ii) mouse heart cine imaging, (iii) human kidney diffusion tensor imaging (DTI) data, and (iv) human brain DTI data. Myocardial T1 values changed by 86.1 ± 171 ms following despiking, and fractional anisotropy values were recovered following despiking of DTI data. CONCLUSION: The RPCA despiking algorithm will be a valuable postprocessing method for retrospectively removing stripe artifacts without affecting the underlying signal of interest. Magn Reson Med 75:2517-2525, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Animals , Artifacts , Brain/diagnostic imaging , Humans , Kidney/diagnostic imaging , Mice , Principal Component Analysis , Signal Processing, Computer-Assisted
9.
Front Neurosci ; 9: 97, 2015.
Article in English | MEDLINE | ID: mdl-25859178

ABSTRACT

Quantitative imaging aims to provide in vivo neuroimaging biomarkers with high research and diagnostic value that are sensitive to underlying tissue microstructure. In order to use these data to examine intra-cortical differences or to define boundaries between different myelo-architectural areas, high resolution data are required. The quality of such measurements is degraded in the presence of motion hindering insight into brain microstructure. Correction schemes are therefore vital for high resolution, whole brain coverage approaches that have long acquisition times and greater sensitivity to motion. Here we evaluate the use of prospective motion correction (PMC) via an optical tracking system to counter intra-scan motion in a high resolution (800 µm isotropic) multi-parameter mapping (MPM) protocol. Data were acquired on six volunteers using a 2 × 2 factorial design permuting the following conditions: PMC on/off and motion/no motion. In the presence of head motion, PMC-based motion correction considerably improved the quality of the maps as reflected by fewer visible artifacts and improved consistency. The precision of the maps, parameterized through the coefficient of variation in cortical sub-regions, showed improvements of 11-25% in the presence of deliberate head motion. Importantly, in the absence of motion the PMC system did not introduce extraneous artifacts into the quantitative maps. The PMC system based on optical tracking offers a robust approach to minimizing motion artifacts in quantitative anatomical imaging without extending scan times. Such a robust motion correction scheme is crucial in order to achieve the ultra-high resolution required of quantitative imaging for cutting edge in vivo histology applications.

10.
Neuroimage ; 113: 1-12, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25783205

ABSTRACT

We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.


Subject(s)
Echo-Planar Imaging/instrumentation , Echo-Planar Imaging/methods , Head Movements , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Adult , Algorithms , Artifacts , Female , Humans , Male , Prospective Studies , Psychomotor Performance/physiology , Signal-To-Noise Ratio , Visual Perception/physiology , Wavelet Analysis
11.
Front Neurosci ; 8: 278, 2014.
Article in English | MEDLINE | ID: mdl-25309307

ABSTRACT

Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2(*), which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2(*) from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2(*) maps and reduced the coefficient of variation for both types of data-with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting.

12.
PLoS One ; 9(3): e91090, 2014.
Article in English | MEDLINE | ID: mdl-24609065

ABSTRACT

Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM), we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity.


Subject(s)
Nerve Net/physiology , Neurofeedback , Visual Cortex/physiology , Adolescent , Adult , Bayes Theorem , Female , Humans , Male , Models, Neurological , Young Adult
13.
Magn Reson Med ; 70(2): 358-69, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22936599

ABSTRACT

Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction.


Subject(s)
Algorithms , Artifacts , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Female , Healthy Volunteers , Humans , Male , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Signal-To-Noise Ratio
14.
J Neurosci ; 32(49): 17830-41, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223302

ABSTRACT

Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI-based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity and thus provide "brain training" to deliver particular perceptual enhancements.


Subject(s)
Functional Neuroimaging/psychology , Neurofeedback/physiology , Psychomotor Performance/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adolescent , Adult , Female , Functional Neuroimaging/methods , Humans , Learning/physiology , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/psychology , Male , Neurofeedback/methods , Photic Stimulation/methods , Social Control, Informal/methods , Visual Fields/physiology
15.
J Neurosci ; 32(46): 16095-105, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23152594

ABSTRACT

In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with postmortem cyto- or myeloarchitectonics from the same individual. We combined high-resolution (800 µm) quantitative T(1) mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the "auditory core" of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to postmortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two "mirror-image" tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that these two maps within the core are the human analogs of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multimodal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies.


Subject(s)
Auditory Cortex/physiology , Brain Mapping , Acoustic Stimulation , Adult , Auditory Cortex/anatomy & histology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Models, Statistical , Whole Body Imaging , Young Adult
16.
PLoS One ; 7(3): e32379, 2012.
Article in English | MEDLINE | ID: mdl-22427831

ABSTRACT

In-vivo whole brain mapping of the radio frequency transmit field B(1) (+) is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B(1) (+) mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B(1) (+) deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively.


Subject(s)
Brain Mapping/methods , Magnetic Fields , Magnetic Resonance Imaging/methods , Models, Theoretical , Computer Simulation , Germany , Humans , Imaging, Three-Dimensional/methods , Whole Body Imaging/methods
17.
Magn Reson Med ; 68(3): 882-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22213396

ABSTRACT

Diffusion tensor imaging is widely used in research and clinical applications, but still suffers from substantial artifacts. Here, we focus on vibrations induced by strong diffusion gradients in diffusion tensor imaging, causing an echo shift in k-space and consequential signal-loss. We refined the model of vibration-induced echo shifts, showing that asymmetric k-space coverage in widely used Partial Fourier acquisitions results in locally differing signal loss in images acquired with reversed phase encoding direction (blip-up/blip-down). We implemented a correction of vibration artifacts in diffusion tensor imaging using phase-encoding reversal (COVIPER) by combining blip-up and blip-down images, each weighted by a function of its local tensor-fit error. COVIPER was validated against low vibration reference data, resulting in an error reduction of about 72% in fractional anisotropy maps. COVIPER can be combined with other corrections based on phase encoding reversal, providing a comprehensive correction for eddy currents, susceptibility-related distortions and vibration artifact reduction.


Subject(s)
Algorithms , Artifacts , Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Brain/anatomy & histology , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity , Vibration
18.
PLoS One ; 7(12): e52075, 2012.
Article in English | MEDLINE | ID: mdl-23284874

ABSTRACT

In 2001, Krueger and Glover introduced a model describing the temporal SNR (tSNR) of an EPI time series as a function of image SNR (SNR(0)). This model has been used to study physiological noise in fMRI, to optimize fMRI acquisition parameters, and to estimate maximum attainable tSNR for a given set of MR image acquisition and processing parameters. In its current form, this noise model requires the accurate estimation of image SNR. For multi-channel receiver coils, this is not straightforward because it requires export and reconstruction of large amounts of k-space raw data and detailed, custom-made image reconstruction methods. Here we present a simple extension to the model that allows characterization of the temporal noise properties of EPI time series acquired with multi-channel receiver coils, and reconstructed with standard root-sum-of-squares combination, without the need for raw data or custom-made image reconstruction. The proposed extended model includes an additional parameter κ which reflects the impact of noise correlations between receiver channels on the data and scales an apparent image SNR (SNR'(0)) measured directly from root-sum-of-squares reconstructed magnitude images so that κ = SNR'(0)/SNR(0) (under the condition of SNR(0)>50 and number of channels ≤32). Using Monte Carlo simulations we show that the extended model parameters can be estimated with high accuracy. The estimation of the parameter κ was validated using an independent measure of the actual SNR(0) for non-accelerated phantom data acquired at 3T with a 32-channel receiver coil. We also demonstrate that compared to the original model the extended model results in an improved fit to human task-free non-accelerated fMRI data acquired at 7T with a 24-channel receiver coil. In particular, the extended model improves the prediction of low to medium tSNR values and so can play an important role in the optimization of high-resolution fMRI experiments at lower SNR levels.


Subject(s)
Image Enhancement , Magnetic Resonance Imaging/methods , Models, Theoretical , Algorithms , Computer Simulation , Humans , Monte Carlo Method , Neuroimaging , Phantoms, Imaging , Reproducibility of Results
19.
Neuroimage ; 60(1): 562-70, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22197741

ABSTRACT

Indices derived from diffusion tensor imaging (DTI) data, including the mean diffusivity (MD) and fractional anisotropy (FA), are often used to better understand the microstructure of the brain. DTI, however, is susceptible to imaging artefacts, which can bias these indices. The most important sources of artefacts in DTI include eddy currents, nonuniformity and mis-calibration of gradients. We modelled these and other artefacts using a local perturbation field (LPF) approach. LPFs during the diffusion-weighting period describe the local mismatches between the effective and the expected diffusion gradients resulting in a spatially varying error in the diffusion weighting B matrix and diffusion tensor estimation. We introduced a model that makes use of phantom measurements to provide a robust estimation of the LPF in DTI without requiring any scanner-hardware-specific information or special MRI sequences. We derived an approximation of the perturbed diffusion tensor in the isotropic-diffusion limit that can be used to identify regions in any DTI index map that are affected by LPFs. Using these models, we simulated and measured LPFs and characterised their effect on human DTI for three different clinical scanners. The small FA values found in grey matter were biased towards greater anisotropy leading to lower grey-to-white matter contrast (up to 10%). Differences in head position due to e.g. repositioning produced errors of up to 10% in the MD, reducing comparability in multi-centre or longitudinal studies. We demonstrate the importance of the proposed correction by showing improved consistency across scanners, different head positions and an increased FA contrast between grey and white matter.


Subject(s)
Brain/physiology , Diffusion Tensor Imaging , Adult , Brain Mapping , Humans , Image Processing, Computer-Assisted , Male
20.
Curr Biol ; 21(16): 1403-7, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21820308

ABSTRACT

Electrophysiological studies in humans and animals suggest that noninvasive neurostimulation methods such as transcranial direct current stimulation (tDCS) can elicit long-lasting [1], polarity-dependent [2] changes in neocortical excitability. Application of tDCS can have significant and selective behavioral consequences that are associated with the cortical location of the stimulation electrodes and the task engaged during stimulation [3-8]. However, the mechanism by which tDCS affects human behavior is unclear. Recently, functional magnetic resonance imaging (fMRI) has been used to determine the spatial topography of tDCS effects [9-13], but no behavioral data were collected during stimulation. The present study is unique in this regard, in that both neural and behavioral responses were recorded using a novel combination of left frontal anodal tDCS during an overt picture-naming fMRI study. We found that tDCS had significant behavioral and regionally specific neural facilitation effects. Furthermore, faster naming responses correlated with decreased blood oxygen level-dependent (BOLD) signal in Broca's area. Our data support the importance of Broca's area within the normal naming network and as such indicate that Broca's area may be a suitable candidate site for tDCS in neurorehabilitation of anomic patients, whose brain damage spares this region.


Subject(s)
Frontal Lobe/physiology , Speech/physiology , Aged , Animals , Behavior/physiology , Female , Frontal Lobe/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Transcranial Magnetic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...