Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(13): 6026-6032, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38491002

ABSTRACT

Organic-inorganic organohalide hybrid solids have garnered significant attention due to their unique structural diversity, desirable electronic structures, and excellent optoelectronic properties. Here, we investigate the mechanical properties of a homologous series of 2D copper bromide hybrids (A2CuBr4, ACuBr4) through nanoindentation to analyze the contribution of organic interlayer interactions to bulk mechanical response. We identify a direct correlation between the identity of the organic spacer and the bulk mechanical response, where stronger bonding interactions in the organic interlayer resulted in increased hardness and elasticity. Additionally, we uncover a unique conformational dependence within the series of arylammonium spacers which was found to periodically modulate pi-pi interactions between neighboring molecules, leading to an alternating even-odd bulk material response.

2.
ChemSusChem ; 14(17): 3561-3568, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34008311

ABSTRACT

Conjugated polymers have a long history of exploration and use in organic solar cells, and over the last twenty-five years, marked increases in the solar cell efficiency have been achieved. However, the synthetic complexity of these materials has also drastically increased, which makes the scalability of the highest-efficiency materials difficult. If conjugated polymers could be designed to exhibit both high efficiency and straightforward synthesis, the road to commercial reality would be more achievable. For that reason, a new synthetic approach was designed towards PTQ10 (=poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)]). The new synthetic approach to make PTQ10 brought a significant reduction in cost (1/7th the original) and could also easily accommodate different side chains to move towards green processing solvents. Furthermore, high-efficiency organic solar cells were demonstrated with a PTQ10:Y6 blend exhibiting approximately 15 % efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...