Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Genomics ; 6: 34-40, 2018.
Article in English | MEDLINE | ID: mdl-29707045

ABSTRACT

Rarity in reporting whole genome sequence of Dengue virus from dengue endemic countries leaves lacunae in understanding regional pattern of virus mutation and ultimately leading to non-understanding of transmission pattern and clinical outcomes emerging at regional levels. Due to inter-serotype genomic similarity and intra-serotype genomic diversity, appropriate designing of primer pairs appears as an exhaustive exercise. Present paper reports new Dengue virus type-specific primer which may help in characterizing virus specific to Asian origin. Genomes of dengue virus serotypes of Asian region were searched and using advanced bioinformatics tools, serotype specific primers were designed and tested for their targeted amplification efficiency. 19 primers sets for DENV-1, 18 primer sets for DENV-2, 17 for DENV-3 and 18 for DENV-4 were designed. In-silico and experimental testing of the designed primers were performed on virus isolated from both clinical isolates and passaged cultures. While all 17 and 18 primer sets of DENV-3 and DENV-2 respectively yielded good quality sequencing results; in case of DENV-4, 16 out of 18 primer sets and in DENV-1, 16 out of 19 primer sets yielded good results. Average sequencing read length was 382 bases and around 82% nucleotide bases were Phred quality QV20 bases (representing an accuracy of circa one miscall every 100 bases) or higher. Results also highlighted importance of use of primer development algorithm and identified genomic regions which are conservative, yet specific for developing primers to achieve efficiency and specificity during experiments.

2.
Neurobiol Aging ; 34(4): 1310.e11-23, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23040663

ABSTRACT

Protein aggregation and ordered fibrillar amyloid deposition inside and outside of the central nervous system cells is the common pathologic hallmark of most aging-related neurodegenerative disorders. Dominant mutations in the gene encoding superoxide dismutase 1 (SOD1) protein are linked to familial amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by progressive degeneration of motor neurons, leading to muscle paralysis and death. The major histochemical hallmark in the remaining motor neurons of ALS is the intracellular accumulation of ubiquitinated inclusions consisting of insoluble aberrant protein aggregates. However, the molecular pathomechanisms underlying the process have been elusive. Here for the first time, we report that E6-AP, a homologous to E6-AP C terminus-type E3 ubiquitin ligase depleted in ALS mouse models before neurodegeneration. E6-AP coimmunoprecipitates with the SOD1 protein and is predominantly mislocalized in mutant SOD1-containing inclusion bodies. Overexpression of E6-AP increases the ubiquitination and facilitates degradation of SOD1 proteins. Finally, we show that the overexpression of E6-AP suppresses the aggregation and cell death mediated by mutated SOD1 proteins and cellular protective effect is more prominent when E6-AP is overexpressed along with Hsp70. These data suggest that enhancing the activity of E6-AP ubiquitin ligase might be a viable therapeutic strategy to eliminate mutant SOD1-mediated toxicity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Inclusion Bodies/metabolism , Neurons/metabolism , Superoxide Dismutase/metabolism , Ubiquitin-Protein Ligases/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cell Aggregation , Cell Survival , Cells, Cultured , Mice , Mice, Transgenic , Superoxide Dismutase-1
3.
Mol Neurobiol ; 45(3): 571-85, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22610945

ABSTRACT

In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.


Subject(s)
Protein Folding , Ubiquitin-Protein Ligases/metabolism , Animals , Cytoprotection , Endoplasmic Reticulum Stress , Humans , Models, Biological , Neurons/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...