Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848367

ABSTRACT

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Omentum , Oxidative Stress , Islets of Langerhans Transplantation/methods , Omentum/metabolism , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Oxidative Stress/drug effects , Citric Acid/pharmacology , Humans , Antioxidants/pharmacology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/surgery , Pancreatitis, Chronic/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Male , Phase Transition
2.
Biomacromolecules ; 25(7): 4118-4138, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38857534

ABSTRACT

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.


Subject(s)
Alginates , Capsules , Polyamines , Polyelectrolytes , Alginates/chemistry , Polyelectrolytes/chemistry , Capsules/chemistry , Polyamines/chemistry , Animals , Mice , Humans , Microspheres
3.
Nat Biomed Eng ; 7(7): 867-886, 2023 07.
Article in English | MEDLINE | ID: mdl-37106151

ABSTRACT

Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.


Subject(s)
Alginates , Hydrogels , Mice , Animals , Alginates/chemistry , Hydrogels/chemistry , Endothelial Cells , Primates , Biocompatible Materials/chemistry
4.
Sci Adv ; 8(9): eabm1032, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35235346

ABSTRACT

Proinflammatory cytokines have been approved by the Food and Drug Administration for the treatment of metastatic melanoma and renal carcinoma. However, effective cytokine therapy requires high-dose infusions that can result in antidrug antibodies and/or systemic side effects that limit long-term benefits. To overcome these limitations, we developed a clinically translatable cytokine delivery platform composed of polymer-encapsulated human ARPE-19 (RPE) cells that produce natural cytokines. Tumor-adjacent administration of these capsules demonstrated predictable dose modulation with spatial and temporal control and enabled peritoneal cancer immunotherapy without systemic toxicities. Interleukin-2 (IL2)-producing cytokine factory treatment eradicated peritoneal tumors in ovarian and colorectal mouse models. Furthermore, computational pharmacokinetic modeling predicts clinical translatability to humans. Notably, this platform elicited T cell responses in NHPs, consistent with reported biomarkers of treatment efficacy without toxicity. Combined, our findings demonstrate the safety and efficacy of IL2 cytokine factories in preclinical animal models and provide rationale for future clinical testing in humans.


Subject(s)
Interleukin-2 , Melanoma , Animals , Cytokines , Immunotherapy , Interleukin-2/pharmacology , Melanoma/drug therapy , Mice , United States
5.
Nat Biomed Eng ; 2(12): 894-906, 2018 12.
Article in English | MEDLINE | ID: mdl-30931173

ABSTRACT

Continuous glucose monitors (CGMs), used by patients with diabetes mellitus, can autonomously track fluctuations in blood glucose over time. However, the signal produced by CGMs during the initial recording period following sensor implantation contains substantial noise, requiring frequent recalibration via fingerprick tests. Here, we show that coating the sensor with a zwitterionic polymer, found via a combinatorial-chemistry approach, significantly reduces signal noise and improves CGM performance. We evaluated the polymer-coated sensors in mice as well as in healthy and diabetic non-human primates, and show that the sensors accurately record glucose levels without the need for recalibration. We also show that the polymer-coated sensors significantly abrogated immune responses to the sensor, as indicated by histology, fluorescent whole-body imaging of inflammation-associated protease activity, and gene expression of inflammation markers. The polymer coating may allow CGMs to become standalone measuring devices.


Subject(s)
Biosensing Techniques/methods , Blood Glucose/analysis , Coated Materials, Biocompatible/chemistry , Polymers/chemistry , Animals , Biosensing Techniques/instrumentation , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Electrochemical Techniques , Electrodes , Female , Humans , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Signal-To-Noise Ratio , Skin/pathology , Transcriptome
6.
Curr Diab Rep ; 17(7): 47, 2017 07.
Article in English | MEDLINE | ID: mdl-28523592

ABSTRACT

PURPOSE OF REVIEW: Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic ß cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. RECENT FINDINGS: Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Drug Compounding , Islets of Langerhans/physiology , Animals , Clinical Trials as Topic , Humans , Islets of Langerhans Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...