Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(16): 4252-4270, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856601

ABSTRACT

Non-algal particles and chromophoric dissolved organic matter (CDOM) are two major classes of seawater constituents that contribute substantially to light absorption in the ocean within the ultraviolet (UV) and visible (VIS) spectral regions. The similarities in the spectral shape of these two constituent absorption coefficients, a d (λ) and a g (λ), respectively, have led to their common estimation as a single combined non-phytoplankton absorption coefficient, a d g (λ), in optical remote-sensing applications. Given the different biogeochemical and ecological roles of non-algal particles and CDOM in the ocean, it is important to determine and characterize the absorption coefficient of each of these constituents separately. We describe an ADG model that partitions a d g (λ) into a d (λ) and a g (λ). This model improves upon a recently published model [Appl. Opt.58, 3790 (2019)APOPAI0003-693510.1364/AO.58.003790] through implementation of a newly assembled dataset of hyperspectral measurements of a d (λ) and a g (λ) from diverse oceanic environments to create the spectral shape function libraries of these coefficients, a better characterization of variability in spectral shape of a d (λ) and a g (λ), and a spectral extension of model output to include the near-UV (350-400 nm) in addition to the VIS (400-700 nm) part of the spectrum. We developed and tested two variants of the ADG model: the ADG_UV-VIS model, which determines solutions over the spectral range from 350 to 700 nm, and the ADG_VIS model, which determines solutions in the VIS but can also be coupled with an independent extrapolation model to extend output to the near-UV. This specific model variant is referred to as A D G _ V I S-U V E x t . Evaluation of the model with development and independent datasets demonstrates good performance of both ADG_UV-VIS and A D G _ V I S-U V E x t . Comparative analysis of model-derived and measured values of a d (λ) and a g (λ) indicates negligible or small median bias, generally within ±5% over the majority of the 350-700 nm spectral range but extending to or above 10% near the ends of the spectrum, and the median percent difference generally below 20% with a maximum reaching about 30%. The presented ADG models are suitable for implementation as a component of algorithms in support of satellite ocean color missions, especially the NASA PACE mission.

2.
Opt Express ; 31(11): 17450-17479, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381479

ABSTRACT

Extending the capabilities of optical remote sensing and inverse optical algorithms, which have been commonly focused on the visible (VIS) range of the electromagnetic spectrum, to derive the optical properties of seawater in the ultraviolet (UV) range is important to advancing the understanding of various optical, biological, and photochemical processes in the ocean. In particular, existing remote-sensing reflectance models that derive the total spectral absorption coefficient of seawater, a(λ), and absorption partitioning models that partition a(λ) into the component absorption coefficients of phytoplankton, aph(λ), non-algal (depigmented) particles, ad(λ), and chromophoric dissolved organic matter (CDOM), ag(λ), are restricted to the VIS range. We assembled a quality-controlled development dataset of hyperspectral measurements of ag(λ) (N = 1294) and ad(λ) (N = 409) spanning a wide range of values across various ocean basins, and evaluated several extrapolation methods to extend ag(λ), ad(λ), and adg(λ) ≡ ag(λ) + ad(λ) into the near-UV spectral region by examining different sections of the VIS as a basis for extrapolation, different extrapolation functions, and different spectral sampling intervals of input data in the VIS. Our analysis determined the optimal method to estimate ag(λ) and adg(λ) at near-UV wavelengths (350 to 400 nm) which relies on an exponential extrapolation of data from the 400-450 nm range. The initial ad(λ) is obtained as a difference between the extrapolated estimates of adg(λ) and ag(λ). Additional correction functions based on the analysis of differences between the extrapolated and measured values in the near-UV were defined to obtain improved final estimates of ag(λ) and ad(λ) and then the final estimates of adg(λ) as a sum of final ag(λ) and ad(λ). The extrapolation model provides very good agreement between the extrapolated and measured data in the near-UV when the input data in the blue spectral region are available at 1 or 5 nm spectral sampling intervals. There is negligible bias between the modeled and measured values of all three absorption coefficients and the median absolute percent difference (MdAPD) is small, e.g., < 5.2% for ag(λ) and < 10.5% for ad(λ) at all near-UV wavelengths when evaluated with the development dataset. Assessment of the model on an independent dataset of concurrent ag(λ) and ad(λ) measurements (N = 149) yielded similar findings with only slight reduction of performance and MdAPD remaining below 6.7% for ag(λ) and 11% for ad(λ). These results are promising for integration of the extrapolation method with absorption partitioning models operating in the VIS.

SELECTION OF CITATIONS
SEARCH DETAIL
...