Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Annu Rev Phytopathol ; 59: 153-190, 2021 08 25.
Article in English | MEDLINE | ID: mdl-33951403

ABSTRACT

In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.


Subject(s)
Bacterial Proteins , Quorum Sensing , Acyl-Butyrolactones , Bacteria , Plant Diseases
2.
Hortic Res ; 8(1): 13, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33384417

ABSTRACT

Soft rot disease caused by Pectobacterium spp. is responsible for severe agricultural losses in potato, vegetables, and ornamentals. The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease. Previous studies revealed that Z. aethiopica, a member of the section Zantedeschia, is significantly more resistant to Pectobacterium spp. than members of the same genus that belong to the section Aestivae. During early infection, we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections. Similar patterns of bacterial colonization were observed on polydimethylsiloxane (PDMS) artificial inert replicas of leaf surfaces. The replicas confirmed the physical effect of leaf texture, in addition to a biochemical plant-bacterium interaction. The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments, as compared to Zantedeschia group species that have adapted to warm, marshy environments. Transverse leaf sections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members. Finally, an analysis of defense marker genes revealed differential expression patterns in response to infection, with significantly higher levels of lipoxygenase 2 (lox2) and phenylalanine ammonia lyase (pal) observed in the more resistant Z. aethiopica, suggesting greater activation of induced systemic resistance (ISR) mechanisms in this group. The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.

3.
Microorganisms ; 8(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993160

ABSTRACT

Recent phylogenetic studies have transferred certain isolates from monocot plants previously included in the heterogeneous group of Pectobacteriumcarotovorum (Pc) to a species level termed Pectobacterium aroidearum. The specificity of Pectobacterium associated infections had received less attention, and may be of high scientific and economic importance. Here, we have characterized differential responses of Pectobacterium isolates from potato (WPP14) and calla lily (PC16) on two typical hosts: Brassica oleracea var. capitata (cabbage) a dicot host; and Zantedeschia aethiopica (calla lily) a monocot host. The results revealed clear host specific responses following infection with the two bacterial strains. This was demonstrated by differential production of volatile organic compounds (VOCs) and the expression of plant defense-related genes (pal, PR-1, lox2, ast). A related pattern was observed in bacterial responses to each of the host's extract, with differential expression of virulence-related determinants and genes associated with quorum-sensing and plant cell wall-degrading enzymes. The differences were associated with each strain's competence on its respective host.

4.
ACS Chem Biol ; 15(7): 1883-1891, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32392032

ABSTRACT

Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.


Subject(s)
Bacterial Proteins/metabolism , Ligases/metabolism , Pectobacterium/pathogenicity , Salicylic Acid/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Ligases/genetics , Molecular Docking Simulation , Mutation , Pectobacterium/enzymology , Protein Binding , Quorum Sensing/drug effects , Solanum tuberosum/microbiology , Virulence/drug effects
5.
Funct Plant Biol ; 47(3): 195-202, 2020 02.
Article in English | MEDLINE | ID: mdl-32007127

ABSTRACT

The genomes of Arabidopsis and other plants contain cysteine-rich small protein of unknown function, harbouring a transmembrane module (CYSTM proteins). In this work we show that the transcript of one gene (At1g05340) encoding a CYSTM protein is induced mainly by heat and to a lesser extent by UV, but less by NaCl or sorbitol. A functional analysis of At1g05340 and its paralog At2g32210 using T-DNA insertional mutants revealed a decrease in seedlings root length, and a lower PSII efficiency in mature plant, due to heat stress and to a lesser extent due to UV stress, in comparison to the effect on wild-type plants. The sensitivity of these mutants to salt or osmotic stresses did not differ from wild type response, indicating a specific function for these genes in heat and UV. Heat and UV increased reactive oxygen species levels in wild type; however, the levels were higher in the mutant line than in wild type due to heat treatment, but was similar in the mutant lines and wild type due to UV stress. Taken together, our results suggest that these small cysteine-rich proteins are necessary for thermotolerance and protection from UV exposure. The proteins encoded by these genes most likely, act in heat stress by reducing reactive oxygen species level by yet unknown mechanism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cysteine , Gene Expression Regulation, Plant , Seedlings/genetics
6.
BMC Plant Biol ; 18(1): 267, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30400866

ABSTRACT

BACKGROUND: While the role of ethylene in fruit ripening has been widely studied, the contributions of additional plant hormones are less clear. Here we examined the interactions between the transcription factor MaMADS2-box which plays a major role in banana fruit ripening and hormonal regulation. Specifically, we used MaMADS2 repressed lines in transcriptome and hormonal analyses throughout ripening and assessed hormone and gene expression perturbations as compared to wild-type (WT) control fruit. RESULTS: Our analyses revealed major differences in hormones levels and in expression of hormone synthesis and signaling genes mediated by MaMADS2 especially in preclimacteric pulp. Genes encoding ethylene biosynthesis enzymes had lower expression in the pulp of the repressed lines, consistent with reduced ethylene production. Generally, the expression of other hormone (auxin, gibberellins, abscisic acid, jasmonic acid and salicylic acid) response pathway genes were down regulated in the WT pulp prior to ripening, but remained high in MaMADS2 repressed lines. Hormone levels of abscisic acid were also higher, however, active gibberellin levels were lower and auxin levels were similar with MaMADS2 repression as compared to WT. Although abscisic level was higher in MaMADS2 repression, exogenous abscisic acid shortened the time to ethylene production and increased MaMADS2 mRNA accumulation in WT. Exogenous ethylene did not influence abscisic acid level. CRE - a cytokinin receptor, increased its expression during maturation in WT and was lower especially at prebreaker in the repressed line and zeatin level was lower at mature green of the repressed line in comparison to WT. CONCLUSIONS: In addition to previously reported effects of MaMADS2 on ethylene, this transcription factor also influences other plant hormones, particularly at the pre-climacteric stage. The cytokinin pathway may play a previously unanticipated role via MaMADS2 in banana ripening. Finally, abscisic acid enhances MaMADS2 expression to promote ripening, but the transcription factor in turn auto inhibits ABA synthesis and signaling. Together, these results demonstrate a complex interaction of plant hormones and banana fruit ripening mediated by MaMADS2.


Subject(s)
Fruit/metabolism , Musa/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/physiology , Gibberellins/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Salicylic Acid/metabolism
7.
Sci Rep ; 6: 38126, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905512

ABSTRACT

Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.


Subject(s)
Pectobacterium/drug effects , Plant Oils/pharmacology , Quorum Sensing/drug effects , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Biofilms/drug effects , Biofilms/growth & development , Cymenes , Eugenol/pharmacology , Gene Expression/drug effects , Genes, Bacterial , Models, Molecular , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Pectobacterium/pathogenicity , Pectobacterium/physiology , Phenols/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Polygalacturonase/antagonists & inhibitors , Polysaccharide-Lyases/antagonists & inhibitors , Quorum Sensing/genetics , Quorum Sensing/physiology , Sequence Homology, Amino Acid , Structural Homology, Protein , Virulence/drug effects , Virulence/genetics , Virulence/physiology
8.
J Biotechnol ; 238: 22-29, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27639550

ABSTRACT

The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue.


Subject(s)
Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , DNA-Binding Proteins/metabolism , Ornithogalum/metabolism , Pectobacterium/drug effects , Peptides, Cyclic/metabolism , Plants, Genetically Modified/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/pharmacology , Drug Resistance, Bacterial/drug effects , Ornithogalum/genetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Peptides, Cyclic/pharmacology , Plants, Genetically Modified/genetics
9.
Mol Plant Pathol ; 17(4): 487-500, 2016 May.
Article in English | MEDLINE | ID: mdl-26177258

ABSTRACT

Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(ß-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.


Subject(s)
Gene Expression Regulation, Bacterial/drug effects , Hydroxybenzoates/pharmacology , Pectobacterium/genetics , Pectobacterium/pathogenicity , Quorum Sensing/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Cinnamates/pharmacology , Genes, Bacterial , Pectobacterium/drug effects , Quorum Sensing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salicylic Acid/pharmacology , Virulence/drug effects , Virulence/genetics
10.
Res Microbiol ; 166(6): 535-45, 2015.
Article in English | MEDLINE | ID: mdl-25981538

ABSTRACT

Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pectobacterium/drug effects , Pectobacterium/genetics , Plants/chemistry , Polyphenols/pharmacology , Anti-Bacterial Agents/isolation & purification , Biofilms/drug effects , Microbial Sensitivity Tests , Pectobacterium/pathogenicity , Pectobacterium/physiology , Pectobacterium carotovorum/drug effects , Pectobacterium carotovorum/pathogenicity , Plant Diseases/microbiology , Plants/drug effects , Plants/microbiology , Polyphenols/isolation & purification , Virulence/drug effects
11.
Plant Physiol ; 163(2): 1071-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23922270

ABSTRACT

The chemical identity of the reactive oxygen species (ROS) and its subcellular origin will leave a specific imprint on the transcriptome response. In order to facilitate the appreciation of ROS signaling, we developed a tool that is tuned to qualify this imprint. Transcriptome data from experiments in Arabidopsis (Arabidopsis thaliana) for which the ROS type and organelle origin are known were compiled into indices and made accessible by a Web-based interface called ROSMETER. The ROSMETER algorithm uses a vector-based algorithm to portray the ROS signature for a given transcriptome. The ROSMETER platform was applied to identify the ROS signatures profiles in transcriptomes of senescing plants and of those exposed to abiotic and biotic stresses. An unexpected highly significant ROS transcriptome signature of mitochondrial stress was detected during the early presymptomatic stages of leaf senescence, which was accompanied by the specific oxidation of mitochondria-targeted redox-sensitive green fluorescent protein probe. The ROSMETER analysis of diverse stresses revealed both commonalties and prominent differences between various abiotic stress conditions, such as salt, cold, ultraviolet light, drought, heat, and pathogens. Interestingly, early responses to the various abiotic stresses clustered together, independent of later responses, and exhibited negative correlations to several ROS indices. In general, the ROS transcriptome signature of abiotic stresses showed limited correlation to a few indices, while biotic stresses showed broad correlation with multiple indices. The ROSMETER platform can assist in formulating hypotheses to delineate the role of ROS in plant acclimation to environmental stress conditions and to elucidate the molecular mechanisms of the oxidative stress response in plants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Computational Biology/methods , Reactive Oxygen Species/metabolism , Software , Stress, Physiological/genetics , Transcriptome/genetics , Darkness , Gene Expression Regulation, Plant , Green Fluorescent Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Oxidative Stress/genetics , Plant Leaves/genetics , Plant Leaves/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...