Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 35(8): ar105, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38865189

ABSTRACT

The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.


Subject(s)
Chromosome Segregation , Drosophila Proteins , Kinetochores , Meiosis , Microtubules , Oocytes , Kinetochores/metabolism , Animals , Meiosis/physiology , Oocytes/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Female , Centromere/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Aurora Kinase B/metabolism , Aurora Kinase B/genetics
2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559067

ABSTRACT

The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.

3.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370755

ABSTRACT

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a master metabolic regulator that stimulates anabolic cell growth while suppressing catabolic processes such as autophagy. mTORC1 is active in most, if not all, proliferating eukaryotic cells. However, it remains unclear whether and how mTORC1 activity changes from one cell cycle phase to another. Here we tracked mTORC1 activity through the complete cell cycle and uncover oscillations in its activity. We find that mTORC1 activity peaks in S and G2, and is lowest in mitosis and G1. We further demonstrate that multiple mechanisms are involved in controlling this oscillation. The interphase oscillation is mediated through the TSC complex, an upstream negative regulator of mTORC1, but is independent of major known regulatory inputs to the TSC complex, including Akt, Mek/Erk, and CDK4/6 signaling. By contrast, suppression of mTORC1 activity in mitosis does not require the TSC complex, and instead involves CDK1-dependent control of the subcellular localization of mTORC1 itself. Functionally, we find that in addition to its well-established role in promoting progression through G1, mTORC1 also promotes progression through S and G2, and is important for satisfying the Wee1- and Chk1- dependent G2/M checkpoint to allow entry into mitosis. We also find that low mTORC1 activity in G1 sensitizes cells to autophagy induction in response to partial mTORC1 inhibition or reduced nutrient levels. Together these findings demonstrate that mTORC1 is differentially regulated throughout the cell cycle, with important phase-specific functional consequences in proliferating cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...