Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Langmuir ; 39(36): 12865-12877, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37639338

ABSTRACT

The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.

2.
3 Biotech ; 13(5): 137, 2023 May.
Article in English | MEDLINE | ID: mdl-37124987

ABSTRACT

Purple blotch (PB), caused by Alternaria porri (Ellis) Cifferi, is one of the most destructive diseases of onion worldwide. Rapid development and deployment of resistant onion varieties is the most effective approach to control this disease. A single dominant gene, ApR1 was previously linked to PB resistance in onion cultivar 'Arka Kalyan'. In this study, an advanced RIL population derived from a cross between the resistant (Arka Kalyan) and susceptible (Agrifound Rose) cultivar of onion was used to fine map the resistant locus with SNP markers. Twenty plants from the RIL population, ten each with disease resistance and susceptibility trait, were subjected to restriction site-associated DNA sequencing (RAD-Seq) and generated 7388 single nucleotide polymorphisms (SNPs). Correlation analysis between marker genotypes and PB disease phenotype on the 20 plants identified 27 SNPs as candidate markers linked to ApR1 gene for PB resistance. Six candidate SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers designated as ApRsnip5, ApRsnip8, ApRsnip14, ApRsnip21, ApRsnip23 and ApRsnip25. Marker-trait association based on disease phenotyping and KASP genotyping data on 153 RILs confirmed that all six KASP markers were tightly associated with ApR1 gene within the genetic distance of 1.3 CentiMorgan (cM). ApRsnip14 co-segregated with the ApR1 locus. Further, the six KASP markers were tested on 27 onion lines with different genetic backgrounds. ApRsnip14, ApRsnip21, ApRsnip5 and ApRsnip23 not only showed the correct resistance allele in 3 resistance genotypes, but also clustered together in the remaining 24 susceptible lines. Alternatively, ApRsnip8 and ApRsnip25 exhibited false positives in two onion lines which do not have the R-gene. Overall, our results suggest that ApRsnip14 and ApRsnip23 with their close linkage to ApR1 locus and greater applicability on breeding germplasm are recommended in marker-assisted selection for PB resistance in onion breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03562-7.

3.
RNA Biol ; 20(1): 109-119, 2023 01.
Article in English | MEDLINE | ID: mdl-36988190

ABSTRACT

Small RNAs (sRNAs) are short non-coding regulatory RNA sequences that silence the complementary expressive transcripts through an endogenous RNA mediated interference mechanism (RNAi). These sRNAs typically move through plasmodesmata and phloem in plants to support disease resistance, and also through septal pores and vesicles in fungi to act as effector of pathogenicity. Notably, recent reports have shown the occurrence of a bidirectional trafficking of these sRNAs between the host plants and the attacking fungal phytopathogen which have significant implication in the nature of the infection. While the trans-species sRNAs from the pathogen can silence the host mRNAs and inhibit the host immunity genes, the sRNA modules from the host plants can silence the mRNA in the pathogen by impeding the expression of the pathogenicity-related genes. In the present review, we discuss the current state of sRNA trafficking between the plant and the pathogen with special emphasis on the mechanism of cross-kingdom communication which could contribute to the development of pathogen and pest control in future agriculture.


Subject(s)
Fungi , Plants , RNA, Small Untranslated , Agriculture , RNA Interference , RNA, Fungal/genetics , RNA, Messenger , RNA, Small Untranslated/genetics , Plants/genetics , Plants/microbiology , Fungi/genetics , Fungi/pathogenicity
4.
Plant Pathol J ; 38(2): 102-114, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35385916

ABSTRACT

Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.

5.
Planta ; 254(1): 5, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34132917

ABSTRACT

MAIN CONCLUSION: T-DNA-free homozygous mutant lines developed through a single transcript CRISPR/Cas9 system harboring the desired modification in the CaERF28 locus exhibited significantly enhanced resistance to the anthracnose pathogen Colletotrichum truncatum coupled with the improved expression of defense responsive genes. Anthracnose, caused by Colletotrichum species, is a major disease of chilli (Capsicum annuum) accounting for significant pre- and post-harvest yield losses across the tropical and subtropical regions of the world. Management of chilli anthracnose using traditional methods have not met with noticeable success. In the present study, we have demonstrated an enhanced anthracnose resistance through a single transcript unit CRISPR/Cas9 mediated alteration of the susceptibility gene CaERF28 in C. annuum. A construct with a single Pol II promoter-driven expression of Cas9, sgRNA and a hammerhead ribozyme (RZ) was designed to modify the CaERF28 gene in the susceptible chilli genotype Arka Lohit. Fourty-five C-ERF28-induced mutant lines (72.5%) were identified from 62 T0 transgenic plants. Further, simultaneously targeted multiple sites within CaERF28 showed increased mutation (85.7%) efficiency. DNA sequence analysis showed that these plants harboured multiple InDels at the target site. The allelic mutants of C-ERF28 were transferred to the following generations by simple Mendelian inheritance. Segregation in the T1 and T2 generations resulted in the identification of T-DNA free and marker-free C-ERF28 mutant lines. Five homozygous mutants demonstrated enhanced resistance to anthracnose compared to wild type as demonstrated by reduced spore count and fungal growth as well as induced expression of defense-related genes. Our results demonstrated that the STU-CRISPR/Cas9 mediated editing of the CaERF28 gene is a rapid, safe and versatile approach for enhancing anthracnose resistance in chilli pepper and pave way for its utilization in the improvement of other solanaceous crops.


Subject(s)
Capsicum , CRISPR-Cas Systems , Capsicum/genetics , Colletotrichum , Mutagenesis , Plant Diseases/genetics
6.
3 Biotech ; 11(3): 118, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747699

ABSTRACT

Although, the C2H2 zinc finger (ZF) family of plant transcription factors have been implicated in multiple biological processes, they are yet to be characterized in the economically important chilli pepper (Capsicum annuum). In this study, a total of 79 C2H2 ZF genes were identified in the pepper genome. Phylogenetic analysis categorized the pepper C2H2 ZF (CaZF) members into five subfamilies each with unique conserved domains and functions. Genomic organization revealed that CaZF genes have variable number of introns consistent with the characteristics defined by the evolutionary analysis. Segmental duplication-based purifying selection contributed to the expansion of CaZF genes in pepper. Additionally, 11 CaZF genes were identified as targets for 38 miRNAs indicating their role in post-transcriptional silencing-mediated genetic regulation. Gene expression analysis revealed that 18 CaZF genes were differentially expressed post-infection with the anthrocnose pathogen Colletotrichum truncatum, uncovering their potential function in pepper response to biotic stresses. Moreover, CaZFs were significantly induced post-treatment with methyl jasmonate and ethylene indicating their role in defense signaling. Notably, the MeJA responsive cis-elements were detected in the promoter regions of majority of CaZF genes, suggesting that CaZFs may be implicated in defense-responsive signal cross talking. Additionally, 18 CaZF genes were differentially expressed under drought and heat treatment, indicating their involvement in plant response to abiotic stresses. Overall, a comprehensive analysis of CaZF gene family in pepper provided significant insights into the understanding of C2H2 ZF-mediated stress regulation network, which would benefit the genetic improvement of pepper and other allied plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02601-x.

7.
3 Biotech ; 10(9): 400, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32864285

ABSTRACT

Drought stress is primarily responsible for heavy yield losses and productivity in major crops and possesses the greatest threat to the global food security. While conventional and molecular breeding approaches along with genetic engineering techniques have been instrumental in developing drought-tolerant crop varieties, these methods are cumbersome, time consuming and the genetically modified varieties are not widely accepted due to regulatory concerns. Plant breeders are now increasingly centring towards the recently available genome-editing tools for improvement of agriculturally important traits. The advent of multiple sequence-specific nucleases has facilitated precise gene modification towards development of novel climate ready crop variants. Amongst the available genome-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system has emerged as a revolutionary tool for its simplicity, adaptability, flexibility and wide applicability. In this review, we focus on understanding the molecular mechanism of drought response in plants and the application of CRISPR/Cas genome-editing system towards improved tolerance to drought stress.

8.
Org Biomol Chem ; 18(25): 4872, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32555903

ABSTRACT

Correction for 'Half-sandwich (η5-Cp*)Rh(iii) complexes of pyrazolated organo-sulfur/selenium/tellurium ligands: efficient catalysts for base/solvent free C-N coupling of chloroarenes under aerobic conditions' by Charu Sharma et al., Org. Biomol. Chem., 2020, 18, 3599-3606, DOI: 10.1039/D0OB00538J.

9.
Org Biomol Chem ; 18(18): 3599-3606, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32347877

ABSTRACT

Three new pyrazolated chalcogenoether ligated Rh(iii) half-sandwich complexes (1-3) were synthesised by the thermal reaction of chalcogenoether (S, Se and Te) substituted 1H-pyrazole ligands (L1-L3) and [(η5-C5Me5)RhCl]2 in methanol. The complexes were fully characterised by various spectroscopic techniques, and the molecular structures of complexes 1 and2 were also established through single crystal X-ray crystallographic analysis, which indicates a pseudo-octahedral half-sandwich piano-stool geometry around the rhodium metal. All three complexes were found to be thermally stable and insensitive towards air and moisture. One mol% of Rh(iii) complexes (1-3) along with 10 mol% of Cu(OAc)2 were explored for the Buchwald-Hartwig type C-N coupling reactions of amine and aryl chloride. Good to excellent yields (89-92%) of the coupling products were obtained with seleno- and thio-ether functionalised pyrazolated Rh(iii) complexes (1 and 2), while an average yield (39%) was obtained with the telluro-ether functionalised complex (3). In contrast to the previously reported C-N coupling reactions the present reaction works under solvent- and base-free conditions, and the coupling reaction is accomplished in just 6 h with a high yield of the coupling product. The present methodology was also found to be efficient for a wide variety of functionalised aryl halides, and aliphatic or aromatic amines (1° and 2°). Moreover, the reaction also enables the C-N coupling of electron-withdrawing substrates and base-sensitive functionalities.

10.
RSC Adv ; 10(54): 32516-32521, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516488

ABSTRACT

Highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te) have been explored for the reduction of nitrobenzene. A 15 min thermal heating of an aqueous solution of nitrobenzene and hydrazine hydrate in the catalytic presence of Fe3E2(CO)9 (E = S, Se or Te) clusters yield average to excellent aniline transformations. Among the S, Se and Te based iron chalcogenised carbonyl clusters, the diselenide cluster was found to be most efficient and produce almost 90% yield of the desired amino product, the disulfide cluster was also found to be significantly active, produce the 85% yield of amino product, while the ditelluride cluster was not found to be active and produced only 49% yield of the desired product. The catalyst can be reused up to three catalytic cycles and it needs to be dried in an oven for one hour prior to reuse for the best results. The developed method is inexpensive, environmentally benign, does not require any precious metal or a high pressure of toxic CO gas and exclusively brings the selective reduction of the nitro group under feasible and inert free conditions.

11.
Plant Biotechnol J ; 18(1): 20-31, 2020 01.
Article in English | MEDLINE | ID: mdl-31365173

ABSTRACT

Targeted mutagenesis via genome-editing technologies holds great promise in developing improved crop varieties to meet future demands. Point mutations or single nucleotide polymorphisms often determine important agronomic traits of crops. Genome-editing-based single-base changes could generate elite trait variants in crop plants which help in accelerating crop improvement. Among the genome-editing technologies, base editing has emerged as a novel and efficient genome-editing approach which enables direct and irreversible conversion of one target base into another in a programmable manner. A base editor is a fusion of catalytically inactive CRISPR-Cas9 domain (Cas9 variants) and cytosine or adenosine deaminase domain that introduces desired point mutations in the target region enabling precise editing of genomes. In the present review, we have summarized the development of different base-editing platforms. Then, we have focussed on the current advances and the potential applications of this precise technology in crop improvement. The review also sheds light on the limitations associated with this technology. Finally, the future perspectives of this emerging technology towards crop improvement have been highlighted.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Gene Editing
12.
Bioinformation ; 15(9): 689-696, 2019.
Article in English | MEDLINE | ID: mdl-31787818

ABSTRACT

Transcription factors (TFs) are biological regulators of gene function in response to various internal and external stimuli. C2H2 zinc finger proteins (C2H2-ZFPs) are a large family of TFs that play crucial roles in plant growth and development, hormone signalling and response to biotic and abiotic stresses. While C2H2-ZFPs have been well characterized in many model and crop plants, they are yet to be ascertained in the evolutionarily important C3 plant Dichanthelium oligosanthes (Heller's rosette grass). In the present study, we report 32 C2H2-ZF genes (DoZFs) belonging to three different classes-Q type, C-type and Z-type based on structural elucidation and phylogenetic analysis. Sequence comparisons revealed paralogs within the DoZFs and orthologs among with rice ZF genes. Motif assignment showed the presence of the distinctive C2H2-ZF conserved domain "QALGGH" in these proteins. Cis-element analysis indicated that majority of the predicted C2H2-ZFPs are associated with hormone signalling and abiotic stress responses. Further, their role in nucleic acid binding and transcriptional regulation was also observed using predicted functional assignment. Thus, we report an overview of the C2H2-ZF gene family in D. oligosanthes that could serve as the basis for future experimental studies on isolation and functional implication of these genes in different biological mechanism of C3 plants.

13.
Org Biomol Chem ; 17(40): 8969-8976, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31576395

ABSTRACT

A new 1-[N-benzylacetamido]-3-[1-(2-phenylselenylethyl)]benzimidazolium chloride (L), the precursor of a novel (Se, CNHC, N-)-type pincer ligand (L) was synthesised in high yield through a sequence of consecutive reactions of 1H-benzimidazole with ethylene dichloride, sodium selenophenolate, and N-benzyl-2-chloroacetamide. The palladium-promoted reaction of L with PdCl2 resulted in a moisture- and air-insensitive complex [Pd(L-H2Cl)Cl] (1), which demonstrated outstanding catalytic potential for Mizoroki-Heck coupling of aromatic bromides and chlorides (with yields up to 94% and 70%, respectively) at very low catalyst loading (0.2 mol%) and under mild reaction conditions in water. The complex (1) was also investigated for Suzuki-Miyaura coupling and found to be selectively efficient (yields up to 94%) for Suzuki-Miyaura coupling of aromatic bromides at 0.01 mol% of 1 in water. All coupling reactions were carried out in the green and economical solvent, water, which is highly desirable for bulk synthesis of complex molecules in industry. During the catalytic process, complex 1 converted into PdSe nanoparticles (NPs, size range 5-6 nm) in situ. The morphology and composition of these NPs were analysed through high-resolution transmission electron microscopy and transmission electron microscopy-energy dispersive X-ray spectroscopy, respectively. The core-level, X-ray photoelectron spectroscopy analysis confirmed the presence of stable Pd0 and Pd2+ oxidation states in these PdSe NPs. Based on further experimental investigations, these nanoparticles were found to work as a stock of true catalytic species. The hot filtration test, as well as the two-phase test, confirmed the largely homogeneous nature of the catalytic process, which probably proceeds by leaching of solution-phase Pd species from these NPs.

14.
3 Biotech ; 9(1): 9, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30622847

ABSTRACT

Anthracnose, caused by Colletotrichum spp. is the most devastating disease of chili (Capsicum annuum) in the tropical and subtropical regions of the world. The present study aimed at molecular mapping and development of markers linked to a new gene for anthracnose resistance in the chili cultivar 'Punjab Lal'. Phenotypic evaluation of F1, F2, and BC1F1 populations derived from a cross between 'Punjab Lal' and susceptible cultivar 'Arka Lohit' against a virulent isolate of C. truncatum revealed that anthracnose resistance in Punjab Lal is governed by a monogenic-dominant gene designated as RCt1. Forty-four (28 ISSRs and 16 AFLPs) out of 201 markers exhibited parental polymorphism and were used in bulk segregant analysis. Three ISSRs (ISSR411493, ISSR581485, and ISSR1121857) and one AFLP marker (E-ACA/M-CTG516) showed precise polymorphism between resistant and susceptible bulks, and were used for genotyping F2 and BC1 populations. The four putative fragments were converted into sequence-tagged site (STS) markers and southern blotting confirmed their association with the resistance locus. Molecular mapping revealed that the STS markers CtR-431 and CtR-594 were closely linked to the RCt1 locus in coupling at distances of 1.8 and 2.3 cM, respectively. Furthermore, both of these markers showed the presence of resistance-linked allele in seven genotypes including the highly resistant C. chinnese 'PBC932' and C. baccatum 'PBC80' while negatively validated in 32 susceptible genotypes. Therefore, CtR431 and CtR-594 could be recommended as efficient diagnostic markers to facilitate the introgression of RCt1 locus into susceptible chili variants towards the development of high-yielding anthracnose resistance genotypes in C. annuum background.

15.
Bioinformation ; 15(12): 907-917, 2019.
Article in English | MEDLINE | ID: mdl-32256010

ABSTRACT

MicroRNAs are small non-coding RNAs of 21-24 nucleotides in length that acts as important modulators of gene expression related to numerous biological processes including development and defense response in eukaryotes. However, only a limited report on onion (Allium cepa) miRNAs is available and their associated role in growth and development of onion is not yet clear. Therefore, it is of interest to identify miRNAs and their targets in Allium cepa using the genome survey sequences (GSSs) and expressed sequence tags (ESTs) and deduce the functions of the target genes using gene ontology (GO) terms. We report 14 potential miRNAs belonging to 13 different families (miR162, miR168, miR172c, miR172e, miR398, miR400, miR414, miR1134, miR1223, miR6219, miR7725, miR8570, miR8703 and miR8752). BLAST analysis using psRNATarget server predicted 39 potential targets for the identified miRNAs majority of which were transcription factors implicated in plant growth, development, hormone signaling and stress responses. These data forms the basis for further analysis and verification towards understanding the miRNA mediated regulatory mechanism in Allium cepa.

16.
Front Plant Sci ; 9: 1361, 2018.
Article in English | MEDLINE | ID: mdl-30283477

ABSTRACT

Rice (Oryza sativa L.) is the major food source for more than three billion people of the world. In the last few decades, the classical, mutational, and molecular breeding approaches have brought about tremendous increase in rice productivity with the development of novel rice varieties. However, stagnation in rice yield has been reported in recent decade owing to several factors including the emergence of pests and phyto pathogens, climate change, and other environmental issues posing great threat to global food security. There is an urgent need to produce more rice and associated cereals to satisfy the mammoth task of feeding a still growing population expected to reach 9.7 billion by 2050. Advances in genomics and emergence of multiple genome-editing technologies through use of engineered site-specific nucleases (SSNs) have revolutionized the field of plant science and agriculture. Among them, the CRISPR/Cas9 system is the most advanced and widely accepted because of its simplicity, robustness, and high efficiency. The availability of huge genomic resources together with a small genome size makes rice more suitable and feasible for genetic manipulation. As such, rice has been increasingly used to test the efficiency of different types of genome editing technologies to study the functions of various genes and demonstrate their potential in genetic improvement. Recently developed approaches including CRISPR/Cpf1 system and base editors have evolved as more efficient and accurate genome editing tools which might accelerate the pace of crop improvement. In the present review, we focus on the genome editing strategies for rice improvement, thereby highlighting the applications and advancements of CRISPR/Cas9 system. This review also sheds light on the role of CRISPR/Cpf1 and base editors in the field of genome editing highlighting major challenges and future implications of these tools in rice improvement.

17.
Plant Physiol Biochem ; 132: 1-17, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30170322

ABSTRACT

Temperature extremes, including cold, adversely impact plant growth and development. Plant responses to cold stress (CS) are regulated at both transcriptional and post-transcriptional levels. MicroRNAs (miRNAs), small non-coding RNAs, are known to be involved in post-transcriptional regulation of various developmental processes and metal stress in Brassica napus L. (canola), however, their role in response to CS is largely unknown. In this study, changes in various physiological parameters and endogenous abundance of miRNAs were characterized in spring canola seedlings (DH12075) exposed to 4 °C for 0-48 h. Cold stress induced electrolyte leakage, increased the levels of malondialdheyde and antioxidant enzymes and reduced photosynthetic efficiency. Using small RNA sequencing, 70 known and 126 novel miRNAs were identified in CS leaf tissues and among these, 25 known and 104 novel miRNAs were differentially expressed. Quantitative real-time (qRT) PCR analysis of eight selected miRNAs confirmed their CS responsiveness. Furthermore, the expression of six out of eight miRNAs exhibited an opposite trend in a winter variety of canola, 'Mendel', when compared to 'DH12075'. This first study on the B. napus miRNAome provides a framework for further functional analysis of these miRNAs and their targets in response to CS which may contribute towards the future development of cold resilient crops.


Subject(s)
Brassica napus/genetics , Brassica napus/physiology , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , MicroRNAs/genetics , Stress, Physiological/genetics , Antioxidants/metabolism , Base Sequence , Carotenoids/metabolism , Chlorophyll/metabolism , Electrolytes/metabolism , Genes, Plant , Malondialdehyde/metabolism , MicroRNAs/metabolism , Photosynthesis , Promoter Regions, Genetic/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Reproducibility of Results
18.
3 Biotech ; 8(3): 150, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29616182

ABSTRACT

The repertoire and functions of MADS-box family transcription factors (TFs) largely remains unexplored with respect to floral organogenesis of Momordica dioica Roxb. Degenerative PCR followed by rapid amplification of cDNA ends was employed in the present study to clone and characterize 17 MADS-box genes (designated as MdMADS01 to MdMADS17) from the floral buds of M. dioica. The cloned genes were clustered into three subgroups (11 MIKCC, 4 MIKC* and 2 Mα) based on phylogenetic relationships with the MADS-box genes from Cucumis sativus, Cucumis melo and Arabidopsis thaliana. Southern hybridization showed that all the isolated genes were represented by single copy locus in the M. dioica genome. Gene structure analysis revealed 1-8 exons in MdMADS-box genes with the number of exons in MIKC greatly exceeding from that in M-type genes. Motif elicitation of the MdMADS-box genes indicated the presence of additional domains with MIKC type, suggesting that they had more complex structures. Expression analysis of MdMADS genes in six M. dioica transcriptome suggested that, 11 MIKCC-type genes are associated with floral homeotic functions, 4 MIKC*-type genes (MdMADS12 to MdMADS15) controlled the growth of male gametophyte, while the two M-type genes (MdMADS16 and MdMADS17) played significant role in female gametogenesis and seed development. Overall, these are the first set of MADS-box genes from M. dioica exhibiting a differential expression pattern during floral development. The results from this study will provide valuable information for further functional studies of candidate MADS-box genes in the sexual dimorphism of this economically important dioecious cucurbit.

19.
Plant Sci ; 267: 135-147, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29362092

ABSTRACT

Pepper anthracnose, caused by Colletotrichum species complex is the most destructive disease of chilli (Capsicum annuum L.). miRNAs are key modulators of transcriptional and post- transcriptional expression of genes during defense responses. In the present study, we performed a comparative miRNA profiling of susceptible (Arka Lohit-AL) and resistant (Punjab Lal-PL) chilli cultivars to identify 35 differentially expressed miRNAs that could be classified as positive, negative or basal regulators of defense against C. truncatum, the most potent anthracnose pathogen. Interestingly, a novel microRNA can-miRn37a was significantly induced in PL but largely repressed in AL genotype post pathogen attack. Subsequent over-expression of can-miRn37a in AL showed enhanced resistance to anthracnose, as evidenced by decreased fungal growth and induced expression of defense-related genes. Consequently, the expression of its three target genes encoding the ethylene response factors (ERFs) was down-regulated in PL as well as in the over-expression lines of AL genotypes. The ability of these targets to be regulated by can-miRn37a was further confirmed by transient co-expression in Nicotiana benthamiana. Additionally, the virus-induced silencing of the three targets in the susceptible AL cultivar revealed their role in fungal colonization and induction of C. truncatum pathogenicity in chilli. Taken together, our study suggests that can-miRn37a provides a potential miRNA mediated approach of engineering anthracnose resistance in chilli by repressing ERFs and preventing fungal colonization.


Subject(s)
Capsicum/genetics , Capsicum/microbiology , Colletotrichum/physiology , Disease Resistance , MicroRNAs/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Capsicum/metabolism , MicroRNAs/metabolism , Plant Proteins/metabolism
20.
Plant Physiol Biochem ; 118: 348-355, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28697469

ABSTRACT

Curcuma longa L., accumulates substantial amount of curcumin and essential oil. Little is known about the differential expression of curcumin synthase (CURS) gene and consequent curcumin content variations at different agroclimatic zones. The present study aimed to evaluate the effect of climate, soil and harvesting phase on expression of CURS gene for curcumin yield in two high yielding turmeric cultivars. Expression of CURS gene at different experimental zones as well as at different harvesting phase was studied through transcriptional analysis by qRT-PCR. Curcumin varied from 1.5 to 5% and 1.4-5% in Surama and Roma respectively. The expression of CURS also varied from 0.402 to 5.584 fold in Surama and 0.856-5.217 fold in Roma. Difference in curcumin content at a particular zone varied among different harvesting period from 3.95 to 4.31% in Surama and 3.57-3.83% in Roma. Expression of CURS gene was also effected by harvesting time of the rhizome which varied from 7.389 to 16.882 fold in Surama and 4.41-8.342 fold in Roma. The CURS gene expression was found regardless of variations in curcumin content at different experimental zones. This may be due to the effects of soil and environmental variables. Expression was positively correlated with curcumin content with different harvesting time at a particular zone. This find indicates effect of soil and environment on molecular and biochemical dynamics of curcumin biosynthesis and could be useful in genetic improvement of turmeric.


Subject(s)
Climate , Curcuma/enzymology , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Ligases/biosynthesis , Soil , Curcuma/growth & development , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...