Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
3 Biotech ; 14(3): 62, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38344283

ABSTRACT

This study was conducted to investigate the γ-aminobutyric acid (GABA) production ability of 20 Lactobacillus and 25 Bifidobacterium strains which were previously isolated in our laboratory. Effect of initial pH, incubation time, monosodium glutamate (MSG), and pyridoxal-5'-phosphate (PLP) concentration for highest GABA production by two potent bacterial strains, Levilactobacillus brevis LAB6 and Limosilactobacillus fermentum LAB19 were optimized in the MRS media. A threefold increase in GABA production at an initial pH 4.0, incubation time of 120 h in medium supplemented with 3% MSG and 400 µM of PLP for LAB6 and 300 µM for LAB19 lead to the production of 19.67 ± 0.28 and 20.77 ± 0.14 g/L of GABA, respectively. Coculturing both strains under optimized conditions led to a GABA yield of 20.02 ± 0.17 g/L. Owing to potent anti-inflammatory activity in-vitro, as reported previously, and highest GABA production ability of LAB6 (MTCC 25662), its whole-genome sequencing and bioinformatics analysis was carried out for mining genes related to GABA metabolism. LAB6 harbored a complete glutamate decarboxylase (GAD) gene system comprising gadA, gadB, and gadC as well as genes responsible for the beneficial probiotic traits, such as for acid and bile tolerance and host adhesion. Comparative genomic analysis of LAB6 with 28 completely sequenced Levilactobacillus brevis strains revealed the presence of 95 strain-specific genes-families that was significantly higher than most other L. brevis strains. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03918-7.

2.
Arch Microbiol ; 205(6): 229, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160492

ABSTRACT

Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48 h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.


Subject(s)
Alphaproteobacteria , Arsenic , Arsenic/toxicity , Soil , Bioprospecting , Fertilizers , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
Braz J Microbiol ; 54(1): 293-309, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36401067

ABSTRACT

Probiotics are known to stimulate, modulate, and regulate host immune response by regulating specific sets of genes and improve glucose homeostasis through regulating dipeptidyl peptidase (DPP-IV) activity, but the mechanism behind their protective role is not clearly understood. Therefore, the present study was designed to isolate indigenous lactic acid bacterial (LAB) strains from different fermented food samples, vegetables, and human infant feces exhibiting anti-inflammatory, antioxidant, and DPP-IV inhibitory activity. A total of thirty-six Gram-positive, catalase-negative, and rod-shaped bacteria were isolated and screened for their anti-inflammatory activity using lipopolysaccharide (LPS)-induced inflammation on the murine (RAW264.7) macrophages. Among all, sixteen strains exhibited more than 90% reduction in nitric oxide (NO) production by the LPS-treated RAW264.7 cells. Prioritized strains were characterized for their probiotic attributes as per the DBT-ICMR guidelines and showed desirable probiotic attributes in a species and strain-dependent manner. Accordingly, Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, Lactiplantibacillus plantarum LAB31, Pediococcus acidilactici LAB8, and Lactiplantibacillus plantarum LAB39 were prioritized. Furthermore, these strains when co-supplemented with LPS and treated on RAW264.7 cells inhibited the mitogen-activated protein kinases (MAPKs), i.e., p38 MAPK, ERK1/2, and SAPK/JNK, cyclooxygenase-2 (COX-2), relative to the LPS-alone-treated macrophages. LAB31 and LAB39 also showed 64 and 95% of DPP-IV inhibitory activity relative to the Lacticaseibacillus rhamnosus GG ATCC 53103, which was used as a reference strain in all the studies. Five prioritized strains ameliorated the LPS-induced inflammation by downregulating the JNK/MAPK pathway and could be employed as an alternative bio-therapeutic strategy in mitigating gut-associated inflammatory conditions. The potential mechanism of action of prioritized LAB strains in preventing the LPS-induced inflammation in RAW 264.7 macrophage cells.


Subject(s)
Lactobacillales , Humans , Animals , Mice , Lactobacillales/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Lactic Acid , Nitric Oxide
5.
3 Biotech ; 11(5): 253, 2021 May.
Article in English | MEDLINE | ID: mdl-33968596

ABSTRACT

The present study reports pollution evaluation indices employed to assess the intensity of metal pollution in water systems affected by acid mine drainage from rat-hole coal mines prevalent in North-east India. The concentration of seven eco-toxic metals was evaluated from coal mine waters which showed concentration order of Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Chromium (Cr) > Lead (Pb) > Copper (Cu) > Cadmium (Cd). The water samples were acidic with mean pH 2.67 and burdened with dissolved solids (924.8 mg/L). The heavy metal pollution index (HPI) and heavy metal evaluation index (HEI) displayed high and medium range of pollution level in majority of the water samples. Statistical correlation suggested strong positive correlation between metals such as Cr with Mn (r = 0.780), Mn with Fe (r = 0.576), Cr with Fe (r = 0.680), Pb with Mn (r = 0.579) and Cr with Pb (r = 0.606), indicating Mn, Pb, Fe and Cr to be major metal contaminants; an unequivocal affirmation of degradation in water quality. The sampled waters had lower heavy metal concentration during monsoon and post-monsoon seasons. The commonly occurring bacterial species Bacillus pseudomycoides and Bacillus siamensis were chosen to understand their behavioral responses toward metal contamination. Findings demonstrated that Bacillus spp. from control environment had low tolerance to metals stress as evident from their MTC, MIC and growth curve studies. The survival of the native isolates across varying pH, salinity and temperature in the coal mine areas suggest these isolates as promising candidates for reclamation of rat-hole coal mining sites.

6.
PLoS One ; 14(5): e0216995, 2019.
Article in English | MEDLINE | ID: mdl-31120947

ABSTRACT

Metal tolerant bacterium Chryseobacterium sp. PMSZPI previously isolated and characterized from uranium ore deposit was studied for elucidating the role of metal transporter genes belonging to the Cation Diffusion Facilitator (CDF), Root-Nodulation-Division (RND) and PIB-type ATPase family in cadmium and uranium tolerance. The bacterium showed tolerance towards cadmium (MIC~6mM) and uranium (MIC~2mM) and was found to harbor metal transporter genes belonging to CDF, RND and PIB-type ATPase family of proteins. Expression studies by real-time PCR showed an upregulation of czcA(RND), czcD(CDF) and cadA(PIB-type ATPase) genes in presence of cadmium or uranium. Higher expression of czcA and czcD was found when the bacterium was treated with cadmium and uranium respectively. This study provides significant insight into the molecular mechanism that plays a role in cadmium and uranium tolerance in bacteria.


Subject(s)
Cadmium/chemistry , Chryseobacterium/genetics , Genes, Bacterial , Metals/chemistry , Uranium/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Bacterial , Phylogeny , Real-Time Polymerase Chain Reaction , Repressor Proteins/genetics
7.
Indian J Med Microbiol ; 36(1): 43-48, 2018.
Article in English | MEDLINE | ID: mdl-29735825

ABSTRACT

BACKGROUND: Acinetobacter baumannii has emerged as an important nosocomial pathogen, its ability to acquire resistance to carbapenems and aminoglycosides, has complicated their treatment regimen. The present study investigates the prevalence and diversity of aminoglycoside-modifying enzymes and 16S methyltransferases in A. baumannii isolates recovered from patients admitted in Intensive Care Unit (ICU) of a tertiary referral hospital in Northeastern India. MATERIALS AND METHODS: We investigated the high-level aminoglycoside-resistance (HLAR) (gentamicin and amikacin minimum inhibitory concentration ≥ 512 µg/ml) among 164 multidrug-resistant A. baumannii obtained from ICU. Genes encoding aminoglycoside-modifying enzymes, 16S methyltransferase and coexisting beta-lactamases were amplified. Horizontal transferability, plasmid stability and elimination assays were performed. Clonality and sequence types were evaluated by repetitive extragenic palindromic-polymerase chain reaction and multilocus sequence typing (MLST) respectively. RESULTS: A total of 130 (79.2%) isolates were found to exhibit HLAR, with acquired aminoglycoside-resistance genes in 109 (83.8%) isolates along with coexisting extended-spectrum beta-lactamases and metallo-beta-lactamases. Genes aph (3') I, aph (3') VIa and armA were predominant and horizontally transferable. Plasmids were eliminated with single sodium dodecyl sulphate treatment. Seventeen haplotypes were found responsible for the infection. MLST revealed circulation of ST583 and ST188 in ICU. CONCLUSIONS: This study reveals the presence of aminoglycoside-resistance genes in combination with blaCTXM and blaNDM, which are highly stable and not frequently reported from this geographical region. Further, the study could predict limited treatment option and need for formulating infection control strategy.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Methyltransferases/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Humans , India , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , Polymerase Chain Reaction , beta-Lactamases/genetics
8.
3 Biotech ; 8(1): 31, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29291144

ABSTRACT

Natural products or their derivatives provide a reliable resource for new drugs. The multi-step chemical reaction to produce new drug is not only expensive but also release pollutants. The precursor-based combinatorial biosynthesis (PCB) is, however, a better option to produce novel natural products with potential pharmaceutical applications. The present work is an attempt to synthesize an antibacterial compound by transforming thiophene precursor using endolithic Streptomyces sp. AL51. The Streptomyces sp. AL51 was isolated from a granite rock sample collected from Mylliem, Meghalaya, India. The isolate was identified as Streptomyces sp. based on its cultural, morphological, biochemical and molecular characteristics. The bioactive compound CAx1 was extracted from the fermentation broth. The compound was characterized by bioactivity-guided fractionation and identified by infrared, UV-visible, nuclear magnetic resonance and mass spectrometry data and identified as 7-[1-(thiophene-5-yl)-1-formamido]-3-propylenyl-3-cephem-4-carboxylic acid with molecular formula C15H14N2O4S2. The purified compound showed considerable in vitro antibacterial activity against both Gram-positive and Gram-negative bacteria showing its broad spectrum property. The obtained results provide promising baseline information for the potential use of endolithic actinobacterium for semisynthetic drug discovery. This is the first report on PCB of broad range antibacterial compound by endolithic Streptomyces strain.

9.
World J Microbiol Biotechnol ; 33(10): 178, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28932951

ABSTRACT

On screening of endolithic actinobacteria from a granite rock sample of Meghalaya for antibacterial compound, a novel antibacterial compound CCp1 was isolated from the fermentation broth of Actinomadura sp. AL2. On purification of the compound based on chromatographic techniques followed by characterization with FT-IR, UV-visible, 1H NMR, 13C NMR and mass spectrometry, the molecular formula of the compound was generated as C20H17N3O2, a furopyrimidine derivative. In vitro antibacterial activity of the compound was evaluated against both Gram positive and negative bacteria by agar well diffusion assay. The compound had lowest MIC (2.00 µg/ml) for Bacillus subtilis and highest MIC (> 64 µg/ml) for Staphylococcus epidermidis and Pseudomonas aeruginosa. The study revealed that the compound has potential antibacterial activity. The mode of action of the antibacterial compound was evaluated through in silico studies for its ability to bind DNA gyrase, 30S RNA molecules, OmpF porins and N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU). The antibacterial compound demonstrated more favorable docking with DNA gyrase, 30S RNA molecules and OmpF porins than GlmU which support the antibacterial compound CCp1 can be as a promising broad spectrum antibiotic agent with "multitarget" characteristics.


Subject(s)
Actinobacteria/growth & development , Anti-Bacterial Agents/chemistry , Furans/chemistry , Pyrimidines/chemistry , Actinobacteria/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Computer Simulation , Fermentation , Furans/isolation & purification , Furans/pharmacology , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Pseudomonas aeruginosa/drug effects , Pyrimidines/isolation & purification , Pyrimidines/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus epidermidis/drug effects
10.
Int J Med Mushrooms ; 19(1): 55-63, 2017.
Article in English | MEDLINE | ID: mdl-28322147

ABSTRACT

The aim of this study was to characterize 3 wild culinary-medicinal mushrooms using molecular tools and to analyze their antioxidant activity. Antioxidant properties were studied by evaluating free radical scavenging, reducing power, and chelating effect. The mushrooms were identified as Lentinus squarrosulus, L. tuber-regium, and Macrocybe gigantean by amplifying internal transcribed spacer regions of ribosomal DNA. The results demonstrated that the methanolic extract of M. gigantean has the highest free radical scavenging effect and chelating effect, whereas the methanolic extract of L. squarrosulus has the highest reducing power. The highest total phenol content and the most ascorbic acid were found in the M. gigantean extracts. Among the 3 mushroom extracts, M. gigantean displayed the most potent antioxidant activity. Molecular characterization using the nuclear ribosomal internal transcribed spacer region as a universal DNA marker was an effective tool in the identification and phylogenetic analysis of the studied mushrooms. The study also indicated that these wild macrofungi are rich sources of natural antioxidants.


Subject(s)
Agaricales/chemistry , Antioxidants/analysis , Free Radical Scavengers/analysis , Agaricales/classification , Agaricales/genetics , Ascorbic Acid/analysis , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , India , Phenols/analysis , Phylogeny , Sequence Analysis, DNA
12.
AMB Express ; 6(1): 69, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27620733

ABSTRACT

Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste.

13.
Rev. biol. trop ; 64(2): 733-745, abr.-jun. 2016. tab, ilus
Article in English | LILACS | ID: biblio-843309

ABSTRACT

AbstractPasteurella multocida is an important veterinary pathogen causing infections in animals and birds. Nowadays, different reports have described the severity of infections, increasing resistance of micro-organisms to antibiotics, and the contribution of ethnoveterinary practices towards the treatment of various ailments of animals. The aim of the present study was to investigate the antibacterial efficacy of the ethanolic extracts of endophytic fungi against P. multocida Capsular Type A strains. A total of six endophytic fungi were isolated from two tropical ethnoveterinary plants: Garcinia xanthochymus H. and Polygonum chinense L. The ethanolic extracts of the endophytic fungi were subjected to in vitro antimicrobial activity by the well diffusion method. Besides, we evaluated the treatment of mice with the potent fungal extract and observed the effects in different organs under electron microscopy. Our results showed that four fungi had antimicrobial activity against the selected pathogen. The best antibacterial activity was showed by the extract of the endophytic fungi, Glomerella magna isolated from G. xanthochymus, with a minimum inhibitory concentration of 46.9 µg/mL and minimum bactericidal concentration of 750 µg/mL. Treatment of mice with the potent fungal extract caused a considerable inhibitory effect on the pathogen growth in vital organs, results that was also confirmed by histopathological studies made by scanning electron microscopy. The present findings indicated that the endophytic fungi G. magna has the potential to provide an effective treatment against infections caused by Pasteurella multocida. However, the isolation of bioactive components needs further investigation. Rev. Biol. Trop. 64 (2): 733-745. Epub 2016 June 01.


ResumenPasteurella multocida es un importante patógeno veterinario que causa infecciones en animales y aves. Hoy en día, diferentes informes han descrito la gravedad de las infecciones, aumentando la resistencia de los microorganismos a los antibióticos, y la contribución de las prácticas etnoveterinarias hacia el tratamiento de diversas enfermedades de los animales. El objetivo del presente estudio fue investigar la eficacia antibacteriana de los extractos etanólicos de hongos endófitos contra cepas de P. multocida tipo capsular A. Un total de seis hongos endófitos fueron aisladas de dos plantas etnoveterinarias tropicales: Garcinia xanthochymus H. y Polygonum chinense L. Los extractos etanólicos de los hongos endófitos fueron sometidos a la actividad antimicrobiana in vitro por el método de difusión. Además, se evaluó el tratamiento de ratones con el extracto de hongos potente y observamos los efectos en diferentes órganos bajo el microscopio electrónico. Nuestros resultados mostraron que cuatro hongos tenían actividad antimicrobiana contra el patógeno seleccionado. La mejor actividad antibacteriana la mostró el extracto de los hongos endófitos, Glomerella magna aislado de G. xanthochymus, con una concentración inhibitoria mínima de 46.9 mg/ml y la concentración bactericida mínima de 750 mg/ml. El tratamiento de ratones con el extracto de hongos potente causó un considerable efecto inhibidor sobre el crecimiento de patógenos en órganos vitales, resultados que también fueron confirmados por estudios histopatológicos realizados por microscopía electrónica de barrido. Los presentes hallazgos indican que el hongos endófitos G. magna tienen el potencial de proporcionar un tratamiento eficaz contra las infecciones causadas por Pasteurella multocida. Sin embargo, el aislamiento de componentes bioactivos necesita más investigación.


Subject(s)
Animals , Rabbits , Pasteurella multocida/drug effects , Polygonum/microbiology , Garcinia/microbiology , Endophytes/chemistry , Liver/drug effects , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning , Pasteurella multocida/ultrastructure , Disk Diffusion Antimicrobial Tests , Endophytes/isolation & purification , Liver/ultrastructure , Anti-Bacterial Agents/isolation & purification
14.
PLoS One ; 11(4): e0152951, 2016.
Article in English | MEDLINE | ID: mdl-27111883

ABSTRACT

Bacillus spp. and related genera native to soils of the pristine sacred groves from Meghalaya, India were characterized using biochemical and 16S rRNA gene analysis which revealed dominance of Bacillus, Paenibacillus, Lysinibacillus and Viridibacillus in the groves. Biochemical estimation was carried out for in vitro testing of plant growth promoting traits present in these isolates. PCR screening were performed for plant growth-promoting related genes involved in the biosynthesis of acid phosphatase (AcPho), indolepyruvate decarboxylase (ipdC), 1-aminocyclopropane-1-carboxylate deaminase (accd) and siderophore biosynthesis protein (asbA). 76% of the sacred grove isolates gave an amplified fragment for AcPho. Three of the isolates gave an amplified fragment for IpdC gene. Apart from 2 isolates, all the other isolates including the reference strains were positive for the amplification of the accd gene indicating their potential to produce ACC deaminase enzyme. 42% of the isolates gave an amplified fragment for asbA gene indicating the potential ability of these isolates to produce the catechol type siderophore, petrobactin. Overall findings indicated multiple PGP genetic traits present in these isolates which suggested that these isolates are capable of expressing multiple PGP traits. Phylogenetic and sequence analysis of accd and asbA genes from the isolates revealed that asbA genes from Paenibacillus taichungiensis SG3 and Paenibacillus tylopili SG24 indicated the occurrence of intergeneric horizontal transfer between Paenibacillus and Bacillus.


Subject(s)
Bacillus/physiology , Plant Development , Soil Microbiology , Bacillus/classification , Bacillus/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics
15.
J Microsc Ultrastruct ; 4(4): 203-210, 2016.
Article in English | MEDLINE | ID: mdl-30023228

ABSTRACT

A vast diversity of microbes including macrofungi remain untapped for valuable bioactivities including antimicrobial activity. Searching wild sources may bring novel natural products with antimicrobial properties that can provide protection against infectious diseases. The present study was designed to identify the diverse forms of mushrooms being used as an ethnomycological source of food and medicine by the tribes of Meghalaya, India, and microscopically study the structures of mushrooms along with observing their antimicrobial effects on pathogens. Fruiting bodies of mushrooms were viewed morphologically and microscopically, and were identified using molecular markers. The dried aerial parts of the fruiting bodies were extracted with methanol and screened for their antimicrobial activity using 2,3,-triphenyl tetrazolium chloride against two Gram-negative and two Gram-positive bacteria. The average diameter of the inhibitory zone induced by fungal extracts ranged from 9 mm to 22 mm for Gram-negative and from 16 mm to 24 mm for Gram-positive bacteria, indicating that this dietary source is a good antimicrobial agent. Mushroom structures were examined using optical microscopy, while the deformities on the pathogens inflicted by mushroom extracts were visualized using scanning electron microscopy, which showed accumulation and formation of biofilm in Gram-positive and shrinkage with cavity formation in Gram-negative bacteria.

16.
Rev Biol Trop ; 64(2): 733-45, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29451766

ABSTRACT

Pasteurella multocida is an important veterinary pathogen causing infections in animals and birds. Nowadays, different reports have described the severity of infections, increasing resistance of micro-organisms to antibiotics, and the contribution of ethnoveterinary practices towards the treatment of various ailments of animals. The aim of the present study was to investigate the antibacterial efficacy of the ethanolic extracts of endophytic fungi against P. multocida Capsular Type A strains. A total of six endophytic fungi were isolated from two tropical ethnoveterinary plants: Garcinia xanthochymus H. and Polygonum chinense L. The ethanolic extracts of the endophytic fungi were subjected to in vitro antimicrobial activity by the well diffusion method. Besides, we evaluated the treatment of mice with the potent fungal extract and observed the effects in different organs under electron microscopy. Our results showed that four fungi had antimicrobial activity against the selected pathogen. The best antibacterial activity was showed by the extract of the endophytic fungi, Glomerella magna isolated from G. xanthochymus, with a minimum inhibitory concentration of 46.9 µg/mL and minimum bactericidal concentration of 750 µg/mL. Treatment of mice with the potent fungal extract caused a considerable inhibitory effect on the pathogen growth in vital organs, results that was also confirmed by histopathological studies made by scanning electron microscopy. The present findings indicated that the endophytic fungi G. magna has the potential to provide an effective treatment against infections caused by Pasteurella multocida. However, the isolation of bioactive components needs further investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endophytes/chemistry , Garcinia/microbiology , Liver/drug effects , Pasteurella multocida/drug effects , Polygonum/microbiology , Animals , Anti-Bacterial Agents/isolation & purification , Disk Diffusion Antimicrobial Tests , Endophytes/isolation & purification , Liver/ultrastructure , Mice , Microscopy, Electron, Scanning , Pasteurella multocida/ultrastructure
17.
PLoS One ; 10(9): e0138056, 2015.
Article in English | MEDLINE | ID: mdl-26361395

ABSTRACT

BACKGROUND: The study investigated the presence of CTX-M-15 type extended spectrum beta-lactamases (ESBL), compared their genetic arrangements and plasmid types in gram negative isolates of hospital and food origin in north-east India. From September 2013 to April 2014, a total of 252 consecutive, non-duplicate clinical isolates and 88 gram negative food isolates were selected. Phenotypic and molecular characterization of ESBL genes was performed. Presence of integrons and gene cassettes were analyzed by integrase and 59 base-element PCR respectively. The molecular environments surrounding blaCTX-M and plasmid types were investigated by PCR and PCR-based replicon typing respectively. Transformation was carried out to assess plasmid transfer. Southern blotting was conducted to localize the blaCTX-M-15 genes. DNA fingerprinting was performed by ERIC-PCR. RESULTS: Prevalence of ESBL was found to be 40.8% (103/252) in clinical and 31.8% (28/88) in food-borne isolates. Molecular characterization revealed the presence of 56.3% (58/103) and 53.5% (15/28) blaCTX-M-15 in clinical and food isolates respectively. Strains of clinical and food origin were non-clonal. Replicon typing revealed that IncI1 and IncFII plasmid were carrying blaCTX-M-15 in clinical and food isolates and were horizontally transferable. The ISEcp1 element was associated with blaCTX-M-15 in both clinical and food isolates. CONCLUSIONS: The simultaneous presence of resistance determinants in non-clonal isolates of two different groups thus suggests that the microbiota of common food products consumed may serve as a reservoir for some of the drug resistance genes prevalent in human pathogens.


Subject(s)
Cross Infection/microbiology , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Food Microbiology , Gene Transfer, Horizontal , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Humans , India , Microbial Sensitivity Tests , Multiplex Polymerase Chain Reaction , Prevalence
18.
J Microbiol ; 52(8): 667-74, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24994011

ABSTRACT

In the present study, silver nanoparticles (AgNPs) with an average particle size of 5.5 ± 3.1 nm were biosynthesized using an endophytic fungus Cryptosporiopsis ericae PS4 isolated from the ethno-medicinal plant Potentilla fulgens L. The nanoparticles were characterized using UV-visible spectrophotometer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), selective area electron diffraction (SAED), and energy dispersive X-ray (EDX) spectroscopy analysis. Antimicrobial efficacy of the AgNPs was analyzed singly and in combination with the antibiotic/antifungal agent chloramphenicol/fluconazole, against five pathogenic microorganisms--Staphylococcus aureus MTCC96, Salmonella enteric MTCC735, Escherichia coli MTCC730, Enterococcus faecalis MTCC2729, and Candida albicans MTCC 183. The activity of AgNPs on the growth and morphology of the microorganisms was studied in solid and liquid growth media employing various susceptibility assays. These studies demonstrated that concentrations of AgNPs alone between 10 and 25 µM reduced the growth rates of the tested bacteria and fungus and revealed bactericidal/fungicidal activity of the AgNPs by delaying the exponential and stationary phases. Examination using SEM showed pits and ruptures in bacterial cells indicating fragmented cell membrane and severe cell damage in those cultures treated with AgNPs. These experimental findings suggest that the biosynthesized AgNPs may be a potential antimicrobial agent.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Fungi/metabolism , Metal Nanoparticles , Silver , Candida albicans/drug effects , Candida albicans/growth & development , Candida albicans/ultrastructure , Chloramphenicol/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Enterococcus faecalis/ultrastructure , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Fluconazole/pharmacology , Fungi/isolation & purification , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Salmonella enterica/drug effects , Salmonella enterica/growth & development , Salmonella enterica/ultrastructure , Spectrometry, X-Ray Emission , Spectrophotometry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/ultrastructure
19.
PLoS One ; 9(4): e94088, 2014.
Article in English | MEDLINE | ID: mdl-24714636

ABSTRACT

The majority of the Earth's microbes remain unknown, and that their potential utility cannot be exploited until they are discovered and characterized. They provide wide scope for the development of new strains as well as biotechnological uses. The documentation and bioprospection of microorganisms carry enormous significance considering their relevance to human welfare. This calls for an urgent need to develop a database with emphasis on the microbial diversity of the largest untapped reservoirs in the biosphere. The data annotated in the North-East India Microbial database (NEMiD) were obtained by the isolation and characterization of microbes from different parts of the Eastern Himalayan region. The database was constructed as a relational database management system (RDBMS) for data storage in MySQL in the back-end on a Linux server and implemented in an Apache/PHP environment. This database provides a base for understanding the soil microbial diversity pattern in this megabiodiversity hotspot and indicates the distribution patterns of various organisms along with identification. The NEMiD database is freely available at www.mblabnehu.info/nemid/.


Subject(s)
Biodiversity , Databases, Factual , Soil Microbiology , Database Management Systems , Humans , India , Internet
20.
Microbes Environ ; 28(1): 33-41, 2013.
Article in English | MEDLINE | ID: mdl-23080407

ABSTRACT

Uranium (U)-tolerant aerobic chemo-heterotrophic bacteria were isolated from the sub-surface soils of U-rich deposits in Domiasiat, North East India. The bacterial community explored at molecular level by amplified ribosomal DNA restriction analysis (ARDRA) resulted in 51 distinct phylotypes. Bacterial community assemblages at the U mining site with the concentration of U ranging from 20 to 100 ppm, were found to be most diverse. Representative bacteria analysed by 16S rRNA gene sequencing were affiliated to Firmicutes (51%), Gammaproteobacteria (26%), Actinobacteria (11%), Bacteroidetes (10%) and Betaproteobacteria (2%). Representative strains removed more than 90% and 53% of U from 100 µM and 2 mM uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure and the activity was retained until 24 h. Overall, 76% of characterized isolates possessed phosphatase enzyme and 53% had PIB-type ATPase genes. This study generated baseline information on the diverse indigenous U-tolerant bacteria which could serve as an indicator to estimate the environmental impact expected to be caused by mining in the future. Also, these natural isolates efficient in uranium binding and harbouring phosphatase enzyme and metal-transporting genes could possibly play a vital role in the bioremediation of metal-/radionuclide-contaminated environments.


Subject(s)
Bacteria/genetics , Biodegradation, Environmental , Biodiversity , Mining , Soil Microbiology , Uranium/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/enzymology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Genes, rRNA , Heterotrophic Processes , India , Microbial Sensitivity Tests , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Uranium/chemistry , Uranium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...