Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e7558, 2019.
Article in English | MEDLINE | ID: mdl-31579570

ABSTRACT

BACKGROUND: Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads. Based on this assembly we also analyzed the mitochondrial transcriptomes of sugarcane and sorghum and improved the annotation of the sugarcane mitochondrion as compared with other species. METHODS: Mitochondrial genomes were assembled from genomic read pools using a bait and assemble methodology. The mitogenome was exhaustively annotated using BLAST and transcript datasets were mapped with HISAT2 prior to analysis with the Integrated Genome Viewer. RESULTS: The sugarcane mitochondrion is comprised of two independent chromosomes, for which there is no evidence of recombination. Based on the reference assembly from the sugarcane cultivar SP80-3280 the mitogenomes of four additional cultivars (R570, LCP85-384, RB72343 and SP70-1143) were assembled (with the SP70-1143 assembly utilizing both genomic and transcriptomic data). We demonstrate that the sugarcane plastome is completely transcribed and we assembled the chloroplast genome of SP80-3280 using transcriptomic data only. Phylogenomic analysis using mitogenomes allow closely related sugarcane cultivars to be distinguished and supports the discrimination between Saccharum officinarum and Saccharum cultum as modern sugarcane's female parent. From whole chloroplast comparisons, we demonstrate that modern sugarcane arose from a limited number of Saccharum cultum female founders. Transcriptomic and spliceosomal analyses reveal that the two chromosomes of the sugarcane mitochondrion are combined at the transcript level and that splice sites occur more frequently within gene coding regions than without. We reveal one confirmed and one potential cytoplasmic male sterility (CMS) factor in the sugarcane mitochondrion, both of which are transcribed. CONCLUSION: Transcript processing in the sugarcane mitochondrion is highly complex with diverse splice events, the majority of which span the two chromosomes. PolyA baited transcripts are consistent with the use of polyadenylation for transcript degradation. For the first time we annotate two CMS factors within the sugarcane mitochondrion and demonstrate that sugarcane possesses all the molecular machinery required for CMS and rescue. A mechanism of cross-chromosomal splicing based on guide RNAs is proposed. We also demonstrate that mitogenomes can be used to perform phylogenomic studies on sugarcane cultivars.

2.
BMC Evol Biol ; 19(1): 33, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683070

ABSTRACT

BACKGROUND: For over 50 years, attempts have been made to introgress agronomically useful traits from Erianthus sect. Ripidium (Tripidium) species into sugarcane based on both genera being part of the 'Saccharum Complex', an interbreeding group of species believed to be involved in the origins of sugarcane. However, recent low copy number gene studies indicate that Tripidium and Saccharum are more divergent than previously thought. The extent of genus Tripidium has not been fully explored and many species that should be included in Tripidium are still classified as Saccharum. Moreover, Tripidium is currently defined as incertae sedis within the Andropogoneae, though it has been suggested that members of this genus are related to the Germainiinae. RESULTS: Eight newly-sequenced chloroplasts from potential Tripidium species were combined in a phylogenetic study with 46 members of the Panicoideae, including seven Saccharum accessions, two Miscanthidium and three Miscanthus species. A robust chloroplast phylogeny was generated and comparison with a gene locus phylogeny clearly places a monophyletic Tripidium clade outside the bounds of the Saccharinae. A key to the currently identified Tripidium species is presented. CONCLUSION: For the first time, we have undertaken a large-scale whole plastid study of eight newly assembled Tripidium accessions and a gene locus study of five Tripidium accessions. Our findings show that Tripidium and Saccharum are 8 million years divergent, last sharing a common ancestor 12 million years ago. We demonstrate that four species should be removed from Saccharum/Erianthus and included in genus Tripidium. In a genome context, we show that Tripidium evolved from a common ancestor with and extended Germainiinae clade formed from Germainia, Eriochrysis, Apocopis, Pogonatherum and Imperata. We re-define the 'Saccharum complex' to a group of genera that can interbreed in the wild and extend the Saccharinae to include Sarga along with Sorghastrum, Microstegium vimineum and Polytrias (but excluding Sorghum). Monophyly of genus Tripidium is confirmed and the genus is expanded to include Tripidium arundinaceum, Tripidium procerum, Tripidium kanashiroi and Tripidium rufipilum. As a consequence, these species are excluded from genus Saccharum. Moreover, we demonstrate that genus Tripidium is distinct from the Germainiinae.


Subject(s)
Genome, Chloroplast , Phylogeny , Poaceae/classification , Poaceae/genetics , Saccharum/classification , Saccharum/genetics , Base Sequence , DNA Primers/metabolism , Genetic Loci , Phenotype , Physical Chromosome Mapping , Species Specificity , Terminology as Topic
3.
Int J Med Robot ; 14(1)2018 Feb.
Article in English | MEDLINE | ID: mdl-28944574

ABSTRACT

BACKGROUND: Image registration (IR) is an important process of developing a spatial relationship between pre-operative data and the physical patient in the operation theatre. Current IR techniques for Computer Assisted Orthopaedic Surgery (CAOS) are time consuming and costly. There is a need to automate and accelerate this process. METHODS: Bespoke quick, cost effective, contactless and automated 3D laser scanning techniques based on the DAVID Laserscanner method were designed. 10 cadaveric knee joints were intra-operatively laser scanned and were registered with the pre-operative MRI scans. The results are supported with a concurrent validity study. RESULTS: The average absolute errors between scan models were systematically less than 1 mm. Errors on femoral surfaces were higher than tibial surfaces (P<0.05). Additionally, scans acquired through the large exposure produced higher errors than the smaller exposure (P<0.05). CONCLUSION: This study has provided proof of concept for a novel automated shape acquisition and registration technique for CAOS.


Subject(s)
Femur/surgery , Imaging, Three-Dimensional/methods , Knee Joint/surgery , Orthopedic Procedures/instrumentation , Orthopedic Procedures/methods , Tibia/surgery , Algorithms , Cadaver , Electronic Data Processing , Equipment Design , Humans , Image Processing, Computer-Assisted , Intraoperative Period , Lasers , Magnetic Resonance Imaging , Reproducibility of Results , Surgery, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...