Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Conscious Cogn ; 117: 103610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056338

ABSTRACT

Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Single-Blind Method , Cerebral Cortex , Emotions/physiology , Disease Susceptibility , Prefrontal Cortex/physiology
2.
Front Hum Neurosci ; 15: 640642, 2021.
Article in English | MEDLINE | ID: mdl-33981206

ABSTRACT

Short-term limb immobilization results in skeletal muscle decline, but the underlying mechanisms are incompletely understood. This study aimed to determine the neurophysiologic basis of immobilization-induced skeletal muscle decline, and whether repetitive Transcranial Magnetic Stimulation (rTMS) could prevent any decline. Twenty-four healthy young males (20 ± 0.5 years) underwent unilateral limb immobilization for 72 h. Subjects were randomized between daily rTMS (n = 12) using six 20 Hz pulse trains of 1.5 s duration with a 60 s inter-train-interval delivered at 90% resting Motor Threshold (rMT), or Sham rTMS (n = 12) throughout immobilization. Maximal grip strength, EMG activity, arm volume, and composition were determined at 0 and 72 h. Motor Evoked Potentials (MEPs) were determined daily throughout immobilization to index motor excitability. Immobilization induced a significant reduction in motor excitability across time (-30% at 72 h; p < 0.05). The rTMS intervention increased motor excitability at 0 h (+13%, p < 0.05). Despite daily rTMS treatment, there was still a significant reduction in motor excitability (-33% at 72 h, p < 0.05), loss in EMG activity (-23.5% at 72 h; p < 0.05), and a loss of maximal grip strength (-22%, p < 0.001) after immobilization. Interestingly, the increase in biceps (Sham vs. rTMS) (+0.8 vs. +0.1 mm, p < 0.01) and posterior forearm (+0.3 vs. +0.0 mm, p < 0.05) skinfold thickness with immobilization in Sham treatment was not observed following rTMS treatment. Reduced MEPs drive the loss of strength with immobilization. Repetitive Transcranial Magnetic Stimulation cannot prevent this loss of strength but further investigation and optimization of neuroplasticity protocols may have therapeutic benefit.

SELECTION OF CITATIONS
SEARCH DETAIL
...