Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Beilstein J Nanotechnol ; 11: 1470-1483, 2020.
Article in English | MEDLINE | ID: mdl-33083195

ABSTRACT

The controlled modification of electronic and photophysical properties of polycyclic aromatic hydrocarbons by chemical functionalization, adsorption on solid supports, and supramolecular organization is the key to optimize the application of these compounds in (opto)electronic devices. Here, we present a multimethod study comprehensively characterizing a family of pyridin-4-ylethynyl-functionalized pyrene derivatives in different environments. UV-vis measurements in toluene solutions revealed absorption at wavelengths consistent with density functional theory (DFT) calculations, while emission experiments showed a high fluorescence quantum yield. Scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of the pyrene derivatives adsorbed on a Cu(111)-supported hexagonal boron nitride (hBN) decoupling layer provided access to spatially and energetically resolved molecular electronic states. We demonstrate that the pyrene electronic gap is reduced with an increasing number of substituents. Furthermore, we discuss the influence of template-induced gating and supramolecular organization on the energies of distinct molecular orbitals. The selection of the number and positioning of the pyridyl termini in tetrasubstituted, trans- and cis-like-disubstituted derivatives governed the self-assembly of the pyrenyl core on the nanostructured hBN support, affording dense-packed arrays and intricate porous networks featuring a kagome lattice.

2.
ACS Nano ; 10(8): 7665-74, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27505260

ABSTRACT

Pyrenes, as photoactive polycyclic aromatic hydrocarbons (PAHs), represent promising modules for the bottom-up assembly of functional nanostructures. Here, we introduce the synthesis of a family of pyrene derivatives peripherally functionalized with pyridin-4-ylethynyl termini and comprehensively characterize their self-assembly abilities on a smooth Ag(111) support by scanning tunneling microscopy. By deliberate selection of number and geometric positioning of the pyridyl-terminated substituents, two-dimensional arrays, one-dimensional coordination chains, and chiral, porous kagomé-type networks can be tailored. A comparison to phenyl-functionalized reference pyrenes, not supporting the self-assembly of ordered structures at low coverage, highlights the role of the pyridyl moieties for supramolecular crocheting and knitting. Furthermore, we demonstrate the selective spangling of pores in the two-dimensional pyrene assemblies by a distinct number of iodine atoms as guests by atomically resolved imaging and complementary X-ray photoelectron spectroscopy.

3.
Nano Lett ; 15(4): 2242-8, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25756645

ABSTRACT

Intramolecular current-induced vibronic excitations are reported in highly ordered monolayers of quaterphenylene dicarbonitriles at an electronically patterned boron nitride on copper platform (BN/Cu(111)). A first level of spatially modulated conductance at the nanometer-scale is induced by the substrate. Moreover, a second level of conductance variations at the molecular level is found. Low temperature scanning tunneling microscopy studies in conjunction with molecular dynamics calculations reveal collective amplification of the molecule's interphenylene torsion angles in the monolayer. Librational modes influencing these torsion angles are identified as initial excitations during vibronic conductance. Density functional theory is used to map phenylene breathing modes and other vibrational excitations that are suggested to be at the origin of the submolecular features during vibronic conductance.

4.
ACS Nano ; 8(1): 430-42, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24328081

ABSTRACT

Suitable templates to steer the formation of nanostructure arrays on surfaces are indispensable in nanoscience. Recently, atomically thin sp(2)-bonded layers such as graphene or boron nitride (BN) grown on metal supports have attracted considerable interest due to their potential geometric corrugation guiding the positioning of atoms, metallic clusters or molecules. Here, we demonstrate three specific functions of a geometrically smooth, but electronically corrugated, sp(2)/metal interface, namely, BN/Cu(111), qualifying it as a unique nanoscale template. As functional adsorbates we employed free-base porphine (2H-P), a prototype tetrapyrrole compound, and tetracyanoquinodimethane (TCNQ), a well-known electron acceptor. (i) The electronic moirons of the BN/Cu(111) interface trap both 2H-P and TCNQ, steering self-organized growth of arrays with extended molecular assemblies. (ii) We report an effective decoupling of the trapped molecules from the underlying metal support by the BN, which allows for a direct visualization of frontier orbitals by scanning tunneling microscopy (STM). (iii) The lateral molecular positioning in the superstructured surface determines the energetic level alignment; i.e., the energy of the frontier orbitals, and the electronic gap are tunable.

5.
Nano Lett ; 13(12): 6130-5, 2013.
Article in English | MEDLINE | ID: mdl-24245663

ABSTRACT

We report on the construction of well-defined surface quantum well arrangements by combining self-assembly protocols and molecular manipulation procedures. After the controlled removal of individual porphyrin molecules from dense-packed arrays on Ag(111), the surface state electrons are confined at the bare silver patches. These act as quantum wells that show well-defined unoccupied bound surface states. Scanning tunneling spectroscopy and complementary boundary element method calculations are performed to characterize the interaction between the bound states of adjacent quantum wells and reveal a hybridization of wave functions resulting in bonding and antibonding states. The interwell coupling can be tuned by the deliberate choice of the molecules acting as potential barriers. The fabrication method is shown to be ideally suited to engineer specific configurations as one-dimensional chains or two-dimensional artificial molecules.


Subject(s)
Electrons , Silver/chemistry , Surface Properties , Electronics , Microscopy, Scanning Tunneling , Spectrum Analysis
6.
Chemistry ; 19(42): 14143-50, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24000003

ABSTRACT

The formation of 2D surface-confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self-assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl-pyridyl interactions and Cu-pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., ß, γ, and δ). Phases ß and γ are chiral and exhibit a simultaneous expression of lateral pyridyl-pyridyl interactions and twofold Cu-pyridyl linkages, whereas phase δ is just stabilized by twofold Cu-pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl-pyridyl interactions and threefold Cu-pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.


Subject(s)
Macrocyclic Compounds/chemistry , Metals/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Copper/chemistry , Hydrogen Bonding , Microscopy, Scanning Tunneling , Models, Molecular , Nanostructures/chemistry , Porosity
7.
Proc Natl Acad Sci U S A ; 110(17): 6678-81, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23576764

ABSTRACT

The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce-ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal-organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated.


Subject(s)
Cerium/chemistry , Lanthanoid Series Elements/chemistry , Models, Chemical , Nanoparticles/chemistry , Polyphenols/chemistry , Microscopy, Scanning Tunneling , Nitriles/chemistry , Surface Properties
8.
ACS Nano ; 7(4): 3139-49, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23521075

ABSTRACT

We investigated the surface bonding and ordering of free-base porphine (2H-P), the parent compound of all porphyrins, on a smooth noble metal support. Our multitechnique investigation reveals a surprisingly rich and complex behavior, including intramolecular proton switching, repulsive intermolecular interactions, and density-driven phase transformations. For small concentrations, molecular-level observations using low-temperature scanning tunneling microscopy clearly show the operation of repulsive interactions between 2H-P molecules in direct contact with the employed Ag(111) surface, preventing the formation of islands. An increase of the molecular coverage results in a continuous decrease of the average intermolecular distance, correlated with multiple phase transformations: the system evolves from an isotropic, gas-like configuration via a fluid-like phase to a crystalline structure, which finally gives way to a disordered layer. Herein, considerable site-specific molecule-substrate interactions, favoring an exclusive adsorption on bridge positions of the Ag(111) lattice, play an important role. Accordingly, the 2D assembly of 2H-P/Ag(111) layers is dictated by the balance between adsorption energy maximization while retaining a single adsorption site counteracted by the repulsive molecule-molecule interactions. The long-range repulsion is associated with a charge redistribution at the 2H-P/Ag(111) interface comprising a partial filling of the lowest unoccupied molecular orbital, resulting in long-range electrostatic interactions between the adsorbates. Indeed, 2H-P molecules in the second layer that are electronically only weakly coupled to the Ag substrate show no repulsive behavior, but form dense-packed islands.


Subject(s)
Macrocyclic Compounds/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Silver/chemistry , Binding Sites , Materials Testing , Particle Size , Phase Transition , Static Electricity , Surface Properties
9.
Nano Lett ; 12(11): 5821-8, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23083003

ABSTRACT

Ultrathin films of boron nitride (BN) have recently attracted considerable interest given their successful incorporation in graphene nanodevices and their use as spacer layers to electronically decouple and order functional adsorbates. Here, we introduce a BN monolayer grown by chemical vapor deposition of borazine on a single crystal Cu support, representing a model system for an electronically patterned but topographically smooth substrate. Scanning tunneling microscopy and spectroscopy experiments evidence a weak bonding of the single BN sheet to Cu, preserving the insulating character of bulk hexagonal boron nitride, combined with a periodic lateral variation of the local work function and the surface potential. Complementary density functional theory calculations reveal a varying registry of the BN relative to the Cu lattice as origin of this electronic Moiré-like superstructure.

10.
Nano Lett ; 12(8): 4077-83, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22765649

ABSTRACT

The control of organic molecules, supramolecular complexes and donor-acceptor systems at interfaces is a key issue in the development of novel hybrid architectures for regulation of charge-carrier transport pathways in nanoelectronics or organic photovoltaics. However, at present little is known regarding the intricate features of stacked molecular nanostructures stabilized by noncovalent interactions. Here we explore at the single molecule level the geometry and electronic properties of model donor-acceptor dyads stabilized by van der Waals interactions on a single crystal Ag(111) support. Our combined scanning tunneling microscopy/spectroscopy (STM/STS) and first-principles computational modeling study reveals site-selective positioning of C(60) molecules on Ce(TPP)(2) porphyrin double-decker arrays with the fullerene centered on the π-system of the top bowl-shaped tetrapyrrole macrocycle. Three specific orientations of the C(60) cage in the van der Waals complex are identified that can be reversibly switched by STM manipulation protocols. Each configuration presents a distinct conductivity, which accounts for a tristable molecular switch and the tunability of the intradyad coupling. In addition, STS data evidence electronic decoupling of the hovering C(60) units from the metal substrate, a prerequisite for photophysical applications.

11.
ACS Nano ; 6(5): 4258-65, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22475131

ABSTRACT

Studies of complex condensed matter systems have led to the discovery of materials of unexpected spatial organization as glasses, glassy crystals, quasicrystals, and protein and virus crystals. Here, we present two-dimensional (2D) short-range disordered molecular crystalline networks, which, regarding spatial organization, can be considered as surface analogues of 3D glassy crystals. In particular, the deposition of a flexible molecular module on Cu(111) gives rise to distinct phases whose characteristics have been examined in real space by scanning tunneling microscopy: a 2D short-range distortional disordered crystalline network and a 2D short-range orientational disordered crystalline network, respectively. Both phases exhibit a random arrangement of nanopores that are stabilized by the simultaneous presence of metal-organic and pyridyl-pyridyl interactions. The 2D short-range distortional disordered crystalline network displayed intriguing flexibility, as probed by the STM tip that modifies the pore shape, a prerequisite for adaptive behavior in host-guest processes.

12.
Nat Nanotechnol ; 7(1): 41-6, 2011 Dec 11.
Article in English | MEDLINE | ID: mdl-22157727

ABSTRACT

The development of a variety of nanoscale applications requires the fabrication and control of atomic or molecular switches that can be reversibly operated by light, a short-range force, electric current or other external stimuli. For such molecules to be used as electronic components, they should be directly coupled to a metallic support and the switching unit should be easily connected to other molecular species without suppressing switching performance. Here, we show that a free-base tetraphenyl-porphyrin molecule, which is anchored to a silver surface, can function as a molecular conductance switch. The saddle-shaped molecule has two hydrogen atoms in its inner cavity that can be flipped between two states with different local conductance levels using the electron current through the tip of a scanning tunnelling microscope. Moreover, by deliberately removing one of the hydrogens, a four-level conductance switch can be created. The resulting device, which could be controllably integrated into the surrounding nanoscale environment, relies on the transfer of a single proton and therefore contains the smallest possible atomistic switching unit.

SELECTION OF CITATIONS
SEARCH DETAIL
...