Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 47(3): 272-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25621460

ABSTRACT

Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Genome , Mammals/genetics , Amino Acid Substitution , Animals , Humans , Phenotype , Phylogeny , Selection, Genetic
2.
BMC Genomics ; 15: 86, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24479613

ABSTRACT

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Subject(s)
Bees/genetics , Genes, Insect , Animals , Base Composition , Databases, Genetic , Interspersed Repetitive Sequences/genetics , Molecular Sequence Annotation , Open Reading Frames/genetics , Peptides/analysis , Sequence Analysis, RNA , Sequence Homology, Amino Acid
3.
Nat Commun ; 1: 131, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21119644

ABSTRACT

Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants. By comparison with earlier estimates based on common variants, our model shows a clear genetic signal of accelerating population growth, suggesting that humanity harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease in contemporary populations may be heavily influenced by the distribution of rare variants.

4.
Nature ; 452(7190): 949-55, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18362917

ABSTRACT

Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.


Subject(s)
Genes, Insect/genetics , Genome, Insect/genetics , Tribolium/genetics , Animals , Base Composition , Body Patterning/genetics , Cytochrome P-450 Enzyme System/genetics , DNA Transposable Elements/genetics , Growth and Development/genetics , Humans , Insecticides/pharmacology , Neurotransmitter Agents/genetics , Oogenesis/genetics , Phylogeny , Proteome/genetics , RNA Interference , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/genetics , Repetitive Sequences, Nucleic Acid/genetics , Taste/genetics , Telomere/genetics , Tribolium/classification , Tribolium/embryology , Tribolium/physiology , Vision, Ocular/genetics
5.
Science ; 316(5822): 222-34, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17431167

ABSTRACT

The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.


Subject(s)
Evolution, Molecular , Genome , Macaca mulatta/genetics , Animals , Biomedical Research , Female , Gene Duplication , Gene Rearrangement , Genetic Diseases, Inborn , Genetic Variation , Humans , Male , Multigene Family , Mutation , Pan troglodytes/genetics , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...