Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(4): 047001, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335327

ABSTRACT

Quantum communication test beds provide a useful resource for experimentally investigating a variety of communication protocols. Here we demonstrate a superconducting circuit test bed with bidirectional multiphoton state transfer capability using time-domain shaped wave packets. The system we use to achieve this comprises two remote nodes, each including a tunable superconducting transmon qubit and a tunable microwave-frequency resonator, linked by a 2 m-long superconducting coplanar waveguide, which serves as a transmission line. We transfer both individual and superposition Fock states between the two remote nodes, and additionally show that this bidirectional state transfer can be done simultaneously, as well as being used to entangle elements in the two nodes.

2.
Rev Sci Instrum ; 92(3): 034710, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33819978

ABSTRACT

Narrowband microwave filters have wide ranging applications, including the reduction in phase noise of microwave sources within a given frequency band. The prospect of developing an automated filter that tunes itself to an arbitrary desired frequency at maximum extinction promises many experimental advantages such as an enhanced efficiency in performing fine frequency detuning scans and saving time and effort as compared to manual tuning. We design, construct, and program such an automated system and present its hardware and software for reproducibility. It consists of a cylindrical cavity filter and two motors, which change the cavity length and the coupling strength of the microwave field into the cavity, respectively. By measuring the cavity response, an algorithm implemented in Python optimizes these two parameters to achieve the tuning of the filter cavity to the desired frequency with a precision of around 20 kHz, which is significantly better than the cavity linewidth (∼1 MHz). We also demonstrate the suppression of phase noise at the desired frequency by more than 10 dB.

3.
Phys Rev E ; 101(1-1): 012417, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069648

ABSTRACT

Oscillatory gene circuits are ubiquitous to biology and are involved in fundamental processes of cell cycle, circadian rhythms, and developmental systems. The synthesis of small, non-natural oscillatory genetic circuits has been increasingly used to test the fundamental principles of genetic network dynamics. While the "repressilator" was used to first demonstrate the proof of principle, a more recently developed dual-feedback, fast, tunable genetic oscillator has demonstrated a greater degree of robustness and control over oscillatory behavior by combining positive- and negative-feedback loops. This oscillator, combining lacI (negative-) and araC (positive-) feedback loops, was, however, modeled using multiple layers of differential equations to capture the molecular complexity of regulation, in order to explain the experimentally measured oscillations. In the search for design principles of such minimal oscillatory circuits, we have developed a reduced model of this dual-feedback loop oscillator consisting of just six differential equations, two of which are delay differential equations. The delay term is optimized, as the only free parameter, to fit the experimental dynamics of the oscillator period and amplitude tunability by the two inducers isopropyl ß-D-1-thiogalactopyranoside (IPTG) and arabinose. We proceed to use our reduced and experimentally validated model to redesign the network by comparing the effect of asymmetry in gene expression at the level of (a) DNA copy numbers and the rates of (b) mRNA translation and (c) degradation, since experimental and theoretical work had predicted a need for an asymmetry in the copy numbers of activator (araC) and repressor (lacI) genes encoded on plasmids. We confirm that the minimal period of the oscillator is sensitive to DNA copy number asymmetry, and can demonstrate that while the asymmetry in the translation rate has an identical effect as the plasmid copy numbers, modulating the asymmetry in mRNA degradation can improve the tunability of the period and amplitude of the oscillator. Thus, our model predicts control at the level of translation can be used to redesign such networks, for improved tunability, while at the same time making the network robust to replication "noise" and the effects of the host cell cycle. Thus, our model predicts experimentally testable principles to redesign a potentially more robust oscillatory genetic network.


Subject(s)
Feedback, Physiological , Models, Genetic , Gene Dosage , Gene Regulatory Networks , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...