Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38550657

ABSTRACT

Introduction: The clinical implementation of deep inspiratory breath-hold (DIBH) radiotherapy to reduce cardiac exposure in patients with left-sided breast cancer is challenging with helical tomotherapy(HT) and has received little attention. We describe our novel approach to DIBH irradiation in HT using a specially designed frame and manual gating, and compare cardiac substructure doses with the free-breathing (FB) technique. Material and methods: The workflow incorporates staggered junctions and a frame that provides tactile feedback to the patient and monitoring for manual cut-off. The treatment parameters and clinical outcome of 20 patients with left-sided breast cancer who have undergone DIBH radiotherapy as a part of an ongoing prospective registry are reported. All patients underwent CT scans in Free Breathing (FB) and DIBH using the in-house Respiframe, which incorporates a tactile feedback-based system with an indicator pencil. Plans compared target coverage, cardiac doses, synchronizing treatment with breath-hold and avoiding junction repetition. MVCT scans are used for patient alignment. Results: The mean dose (Dmean) to the heart was reduced by an average of 34 % in DIBH-HT compared to FB-HT plans (3.8 Gy vs 5.7 Gy). Similarly, 32 % and 67.8 % dose reduction were noted in the maximum dose (D0.02 cc) of the left anterior descending artery, mean 12.3 Gy vs 18.1 Gy, and mean left ventricle V5Gy 13.2 % vs 41.1 %, respectively. The mean treatment duration was 451.5 sec with a median 8 breath-holds; 3 % junction locations between successive breath-holds were replicated. No locoregional or distant recurrences were observed in the 9-month median follow-up. Conclusion: Our workflow for DIBH with Helical-Tomotherapy addresses patient safety, treatment precision and challenges specific to this treatment unit. The workflow prevents junction issues by varying daily breath-hold durations and avoiding junction locations, providing a practical solution for left-sided breast cancer treatment with HT.

3.
J Clin Med ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36362563

ABSTRACT

Despite the advancement in the treatment, nonhealing diabetic foot ulcers (DFUs) are an important clinical issue accounting for increased morbidity and risk of amputation. Persistent inflammation, decreased granulation tissue formation, decreased neo-angiogenesis, and infections are common underlying causes of the nonhealing pattern. Fibroblasts play a critical role in granulation tissue formation and angiogenesis and mediate wound healing how fibroblasts regulate inflammation in nonhealing DFUs is a question to ponder. This study aims to investigate the expression of a de-differentiated subpopulation of fibroblasts which are CD40+ (secretory fibroblasts) and increased secretion of IL-6 and IL-8 but have never been reported in DFUs. We characterized 11 DFU tissues and nearby clean tissues histologically and for the presence of inflammation and CD40+ fibroblasts using immunohistochemistry and RT-PCR. The results revealed significantly increased density of CD40+ fibroblasts and differential expression of mediators of inflammation in DFU tissues compared to clean tissue. Increased expression of IL-6, IL-1ß, and TNF-α in DFU tissues along with CD40+ fibroblast suggest that CD40+ fibroblasts in DFUs contribute to the chronicity of inflammation and targeting fibroblasts phenotypic switch to decrease secretory fibroblasts may have therapeutic significance to promote healing.

4.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34872631

ABSTRACT

Many plasmids encode antibiotic resistance genes. Through conjugation, plasmids can be rapidly disseminated. Previous work identified gut luminal donor/recipient blooms and tissue-lodged plasmid-bearing persister cells of the enteric pathogen Salmonella enterica serovar Typhimurium (S.Tm) that survive antibiotic therapy in host tissues, as factors promoting plasmid dissemination among Enterobacteriaceae. However, the buildup of tissue reservoirs and their contribution to plasmid spread await experimental demonstration. Here, we asked if re-seeding-plasmid acquisition-invasion cycles by S.Tm could serve to diversify tissue-lodged plasmid reservoirs, and thereby promote plasmid spread. Starting with intraperitoneal mouse infections, we demonstrate that S.Tm cells re-seeding the gut lumen initiate clonal expansion. Extended spectrum beta-lactamase (ESBL) plasmid-encoded gut luminal antibiotic degradation by donors can foster recipient survival under beta-lactam antibiotic treatment, enhancing transconjugant formation upon re-seeding. S.Tm transconjugants can subsequently re-enter host tissues introducing the new plasmid into the tissue-lodged reservoir. Population dynamics analyses pinpoint recipient migration into the gut lumen as rate-limiting for plasmid transfer dynamics in our model. Priority effects may be a limiting factor for reservoir formation in host tissues. Overall, our proof-of-principle data indicates that luminal antibiotic degradation and shuttling between the gut lumen and tissue-resident reservoirs can promote the accumulation and spread of plasmids within a host over time.


Subject(s)
Drug Resistance, Bacterial/genetics , Plasmids/genetics , Salmonella typhimurium/genetics , Animals , Conjugation, Genetic , Gene Transfer, Horizontal , Mice , Mice, 129 Strain , Plasmids/physiology , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism , beta-Lactams/metabolism , beta-Lactams/pharmacology
5.
PLoS One ; 12(12): e0190456, 2017.
Article in English | MEDLINE | ID: mdl-29287112

ABSTRACT

Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.


Subject(s)
Corpus Striatum/metabolism , Creatine Kinase/metabolism , DNA, Mitochondrial/metabolism , Energy Metabolism , Ethidium/pharmacology , Mitochondria/enzymology , Animals , Cells, Cultured , Glycolysis , Humans , Oxygen Consumption , Rats , Rats, Sprague-Dawley
6.
Oncotarget ; 4(12): 2487-501, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24318733

ABSTRACT

Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES.


Subject(s)
Cell Hypoxia/physiology , Neuropeptide Y/metabolism , Sarcoma, Ewing/metabolism , Animals , Cell Growth Processes/physiology , Cell Line, Tumor , Dipeptidyl Peptidase 4/metabolism , Heterografts , Humans , Mice , Mice, Nude , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Receptors, Neuropeptide Y/antagonists & inhibitors , Sarcoma, Ewing/blood supply , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...