Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139882

ABSTRACT

Articular cartilage injuries are inherently irreversible, even with the advancement in current therapeutic options. Alternative approaches, such as the use of mesenchymal stem/stromal cells (MSCs) and tissue engineering techniques, have gained prominence. MSCs represent an ideal source of cells due to their low immunogenicity, paracrine activity, and ability to differentiate. Among biomaterials, self-assembling peptide hydrogels (SAPH) are interesting given their characteristics such as good biocompatibility and tunable properties. Herein we associate human adipose-derived stem cells (hASCs) with a commercial SAPH, Puramatrix™, to evaluate how this three-dimensional microenvironment affects cell behavior and its ability to undergo chondrogenic differentiation. We demonstrate that the Puramatrix™ hydrogel comprises a highly porous matrix permissible for hASC adhesion and in vitro expansion. The morphology and cell growth dynamics of hASCs were affected when cultured on the hydrogel but had minimal alteration in their immunophenotype. Interestingly, hASCs spontaneously formed cell aggregates throughout culturing. Analysis of glycosaminoglycan production and gene expression revealed a noteworthy and donor-dependent trend suggesting that Puramatrix™ hydrogel may have a natural capacity to support the chondrogenic differentiation of hASCs. Altogether, the results provide a more comprehensive understanding of the potential applications and limitations of the Puramatrix™ hydrogel in developing functional cartilage tissue constructs.

2.
Front Bioeng Biotechnol ; 11: 1304030, 2023.
Article in English | MEDLINE | ID: mdl-38260748

ABSTRACT

Articular cartilage is a highly specialized tissue able to tolerate physical stress. However, its capacity for restoration is restricted, and injuries to the cartilage do not recover spontaneously. Interest in mesenchymal stem cells derived from human adipose tissue (hASCs) is growing due to their potential to improve tissue healing and recovery. Decellularized extracellular matrix (dECM)-based hydrogels combined with hASCs could serve as an interface for studying behavior and differentiation properties in a cartilage microenvironment. In the present study, we described the behavior of hASCs cultured in a commercial dECM MatriXpec™. The structural microtopography of MatriXpec™ was analyzed by scanning electron micrography, and its protein composition was accessed by mass spectrometry. The protein composition of MatriXpec™ is mainly represented by collagen proteins, building its fibrous ultrastructure. hASCs were cultured three-dimensionally (3D) on MatriXpec™ to perform cell viability, growth, and cartilage differentiation analysis. We showed that MatriXpec™ could be loaded with hASCs and that it supports cell maintenance for several days. We observed that the three-dimensional ultrastructure of the biomaterial is composed of nanofibers, and its protein composition reflects the tissue from which it was harvested. Finally, we showed that the molecular cues from the hydrogel are biologically active as these influence cell behavior and differentiation phenotype, increasing the expression of fibrocartilage-related genes such as SOX9, COL1, COL10, and MMP13. MatriXpec™ hydrogel can be used as an interface for 3D hASCs culture studies as it maintains cell viability and supports its differentiation process.

3.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682690

ABSTRACT

Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome-a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells-of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Cartilage/metabolism , Cartilage, Articular/metabolism , Hydrogels/pharmacology , Mesenchymal Stem Cells/metabolism , Secretome , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...