Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
ISME J ; 13(4): 921-936, 2019 04.
Article in English | MEDLINE | ID: mdl-30518818

ABSTRACT

Although the early coral reef-bleaching warning system (NOAA/USA) is established, there is no feasible treatment that can minimize temperature bleaching and/or disease impacts on corals in the field. Here, we present the first attempts to extrapolate the widespread and well-established use of bacterial consortia to protect or improve health in other organisms (e.g., humans and plants) to corals. Manipulation of the coral-associated microbiome was facilitated through addition of a consortium of native (isolated from Pocillopora damicornis and surrounding seawater) putatively beneficial microorganisms for corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related species strains. The results from a controlled aquarium experiment in two temperature regimes (26 °C and 30 °C) and four treatments (pBMC; pBMC with pathogen challenge - Vibrio coralliilyticus, VC; pathogen challenge, VC; and control) revealed the ability of the pBMC consortium to partially mitigate coral bleaching. Significantly reduced coral-bleaching metrics were observed in pBMC-inoculated corals, in contrast to controls without pBMC addition, especially challenged corals, which displayed strong bleaching signs as indicated by significantly lower photopigment contents and Fv/Fm ratios. The structure of the coral microbiome community also differed between treatments and specific bioindicators were correlated with corals inoculated with pBMC (e.g., Cobetia sp.) or VC (e.g., Ruegeria sp.). Our results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts.


Subject(s)
Anthozoa/microbiology , Coral Reefs , Gammaproteobacteria/classification , Gammaproteobacteria/metabolism , Seawater/microbiology , Animals , Humans , Microbiota , Polymerase Chain Reaction , Probiotics/administration & dosage , Seawater/chemistry , Temperature
2.
PLoS Biol ; 16(8): e2006352, 2018 08.
Article in English | MEDLINE | ID: mdl-30086128

ABSTRACT

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Subject(s)
Microbiota/genetics , Nitrogen Fixation/physiology , Nitrogen/metabolism , Zea mays/metabolism , Mexico , Microbiota/physiology , Phylogeny , Plant Development , Plant Mucilage/metabolism , Plant Roots/metabolism , Polysaccharides/metabolism , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL